Abstract
We calculate the homomorphism of the cohomology induced by the Krichever map of moduli spaces of curves into infinite-dimensional Grassmannian. This calculation can be used to compute the homology classes of cycles on moduli spaces of curves that are defined in terms of Weierstrass points.
This is a preview of subscription content, access via your institution.
References
Arbarello E., de Concini C., Kac V.G., Procesi C.: Moduli spaces of curves and representation theory. Commun. Math. Phys. 117(1), 1–36 (1988)
Bini G.: Generalized Hodge classes on the moduli space of curves. Beiträge Algebra Geom. 44(2), 559–565 (2003)
Fulton, W.: Equivariant Cohomology in Algebraic Geometry. Lecture Notes by D. Anderson (2007)
Griffiths P., Harris J.: Principles of Algebraic Geometry. Wiley, New York (1978)
Goresky M., Kottwitz R., MacPherson R.: Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. 131(1), 25–83 (1998)
Kempf G., Laksov D.: The determinantal formula of schubert calculus. Acta Math. 132, 153–162 (1974)
Kawazumi N.: A generalization of the Morita–Mumford classes to extended mapping class groups for surfaces. Invent. Math. 131(1), 137–149 (1998)
Lam, T., Shimozono, M.: k-double Schur functions and equivariant (co)homology of affine Grassmannian, arXiv: 1105.2170
Liou, J., Schwarz, A.: Equivariant cohomology of infinite-dimensional Grassmannian and shifted Schur functions. Math. Res. Lett. 19(4), 775–784 (2012). arXiv:1201.2554
Liou, J., Schwarz, A.: Weierstrass cycles in moduli spaces and the Krichever map, arXiv:1207.0530
Mumford, D.: Towards an Enumerative Geometry of the Moduli Space of Curves. In: Arithmetic and Geometry, vol. II, pp. 271–328. Progr. Math., vol. 36. Birkhäuser, Boston (1983)
Mulase, M.,: Algebraic theory of the KP equations. In: Perspective in Mathematical Physics, pp. 151–217 (1994)
Macdonald I.G.: Symmetric functions and Hall polynomials. Clarendon Press, Oxford (1995)
Okounkov, A., Olshanski, G.,: Shifted Schur Functions, St. Petersburg Math. J. 9, 239–300 (1998)
Okounkov, A., Olshanski, G.,: Shifted Schur Functions II. In: The Binomial Formula for Characters of Classical Groups and its Applications. Kirillov’s Seminar on Representation Theory, pp. 245–271. Amer. Math. Soc. Transl. Ser. 2, 181. Amer. Math. Soc., Providence (1998)
Pressley A., Segal G.: Loop groups. Oxford Mathematical Monographs. Oxford Science Publications, New York (1986)
Segal, G., Wilson, G.: Loop groups and equations of KdV type. Inst. Hautes Etudes Sci. Publ Math. no. 61, 5–65 (1985)
Sen A., Zwiebach B.: Quantum background independence of closed string field theory. Nucl. Phys. B 423(2–3), 580–630 (1994)
Schwarz A.: Grassmannian and String theory. Commun. Math. Phys. 199(1), 1–24 (1998)
Author information
Authors and Affiliations
Corresponding author
Additional information
The work was partially supported by NSF grant DMS-0805989.
Rights and permissions
About this article
Cite this article
Liou, JM.(., Schwarz, A. Moduli Spaces and Grassmannian. Lett Math Phys 103, 585–603 (2013). https://doi.org/10.1007/s11005-013-0623-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11005-013-0623-8