Skip to main content
Log in

Higher Loop Corrections to a Schwinger–Dyson Equation

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the effects of higher loop corrections to a Schwinger–Dyson equation for propagators. This is made possible by the efficiency of the methods we developed in preceding works, still using the supersymmetric Wess–Zumino model as a laboratory. We obtain the dominant contributions of the three and four-loop primitive divergences at high order in perturbation theory, without the need for their full evaluations. Our main conclusion is that the asymptotic behavior of the perturbative series of the renormalization function remains unchanged, and we conjecture that this will remain the case for all finite order corrections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellon, M., Schaposnik, F.: Renormalization group functions for the Wess–Zumino model: up to 200 loops through Hopf algebras. Nucl. Phys. B, 800, 517–526 (2008). arXiv:0801.0727

    Google Scholar 

  2. Bellon, M.P.: Approximate differential equations for renormalization group functions in models free of vertex divergencies. Nucl. Phys. B, 826[PM], 522–531 (2010). arXiv:0907.2296. doi:10.1016/j.nuclphysb.2009.11.002

  3. Bellon, M.P.: An efficient method for the solution of Schwinger–Dyson equations for propagators. Lett. Math. Phys., 94, 77–86 (2010). arXiv:1005.0196. doi:10.1007/s11005-010-0415-3

    Google Scholar 

  4. Kreimer, D., Yeats, K.: An etude in non-linear Dyson–Schwinger equations. Nucl. Phys. Proc. Suppl., 160, 116–121 (2006). arXiv:hep-th/0605096. doi:10.1016/j.nuclphysbps.2006.09.036

    Google Scholar 

  5. Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann–Hilbert problem. JHEP, 09, 024 (1999) arXiv:hep-th/9909126

  6. Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann– Hilbert problem. I: The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys., 210, 249–273 (2000). arXiv:hep-th/9912092. doi:10.1007/s002200050779

    Google Scholar 

  7. Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann– Hilbert problem. II: the beta-function, diffeomorphisms and the renormalization group. Commun. Math. Phys. 216, 215–241 (2001). arXiv:hep-th/0003188. doi:10.1007/PL00005547

    Google Scholar 

  8. Bollini C.G., Giambiagi J.J., Domínguez A.G.: Analytic regularization and the divergences of quantum field theories. Nuevo Cimento 31, 550–561 (1964)

    Article  Google Scholar 

  9. Speer E.R.: Analytic renormalization. J. Math. Phys. 9, 1404–1410 (1969)

    Article  ADS  Google Scholar 

  10. Speer E.R.: On the structure of analytic renormalization. Commun. Math. Phys. 23, 23–36 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Bierenbaum, I., Weinzierl, S.: The massless two-loop two-point function. Eur. Phys. J. C. 32, 67–78 (2003). arXiv:hep-ph/0308311. doi:10.1140/epjc/s2003-01389-7

    Google Scholar 

  12. Isaev A.P., Gorishnii S.G.: TMΦ 58, 343 (1984)

    Google Scholar 

  13. Isaev A.P., Gorishnii S.G.: Theor. Math. Phys. 58, 232 (1984)

    Google Scholar 

  14. Broadhurst D.J.: Exploiting the 1,440-fold symmetry of the master two-loop diagram. Z. Phys. C 32, 249–253 (1986)

    Article  ADS  Google Scholar 

  15. Schnetz, O.: Quantum periods: a census of \({\phi^4}\)-transcendentals. Commun. Number Theory Phys. 4(1), 1–48 (2010). arXiv:0801.2856

  16. Nakanishi N.: Graph theory and Feynman integrals. Mathematics and its Applications, vol. 11. Gordon and Breach, New York (1971)

    Google Scholar 

  17. Kreimer, D.: The core Hopf algebra. Clay Math. Proc. 11, 313–322 (2010). arXiv:0902.1223

  18. Kreimer, D., van Suijlekom, W.D.: Recursive relations in the core Hopf algebra. Nucl. Phys. B, 820, 682–693 (2009). arXiv:0903.2849. doi:10.1016/j.nuclphysb.2009.04.025

    Google Scholar 

  19. Vermaseren, J.A.M.: New Features of Form (2000). arXiv:math-ph/0010025

  20. Brown, F., Yeats, K.: Spanning forest polynomials and the transcendental weight of feynman graphs. Commun. Math. Phys. 301, 357–382 (2011). arXiv:0910.5429. doi:10.1007/s00220-010-1145-1

  21. Brown, F., Schnetz, O., Yeats, K.: Properties of c 2 invariants of Feynman graphs (2012). arXiv:1203.0188

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc P. Bellon.

Additional information

F. A. Schaposnik associated with CICBA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellon, M.P., Schaposnik, F.A. Higher Loop Corrections to a Schwinger–Dyson Equation. Lett Math Phys 103, 881–893 (2013). https://doi.org/10.1007/s11005-013-0621-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-013-0621-x

Mathematics Subject Classification (2010)

Keywords

Navigation