Skip to main content
Log in

Time-Ordering and a Generalized Magnus Expansion

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Both the classical time-ordering and the Magnus expansion are well known in the context of linear initial value problems. Motivated by the noncommutativity between time-ordering and time derivation, and related problems raised recently in statistical physics, we introduce a generalization of the Magnus expansion. Whereas the classical expansion computes the logarithm of the evolution operator of a linear differential equation, our generalization addresses the same problem, including, however, directly a non-trivial initial condition. As a by-product we recover a variant of the time-ordering operation, known as \({\mathsf{T}^\ast}\)-ordering. Eventually, placing our results in the general context of Rota–Baxter algebras permits us to present them in a more natural algebraic setting. It encompasses, for example, the case where one considers linear difference equations instead of linear differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczél, J.: Lectures on functional equations and their applications. In: Mathematics in Science and Engineering, vol. 19, Academic Press, Dublin (1966)

  2. Aczél, J., Dhombres, J.: Functional Equations in Several Variables: With Applications to Mathematics, Information Theory and to the Natural and Social Sciences, Encyclopedia of Mathematics and its Applications, vol. 31, Cambridge University Press, Cambridge (1989)

  3. Atkinson F.V.: Some aspects of Baxter’s functional equation. J. Math. Anal. Appl. 7, 1 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bachmann S., Graf G.M., Lesovik G.B.: Time ordering and counting statistics. J. Stat. Phys. 138, 333 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Baxter G.: An analytic problem whose solution follows from a simple algebraic identity. Pac. J. Math. 10, 731 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blanes S., Casas F., Oteo J.A., Ros J.: Magnus expansion: mathematical study and physical applications. Phys. Rep. 470, 151 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  7. Cartier P.: On the structure of free Baxter algebras. Adv. Math. 9, 253 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chapoton, F., Patras, F.: Enveloping algebras of preLie algebras, Solomon idempotents and the Magnus formula (2012, preprint). arXiv:1201.2159v1 [math.QA]

  9. Connes A., Kreimer D.: Renormalization in quantum field theory and the Riemann–Hilbert problem I: The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210, 249 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Ebrahimi-Fard K., Gracia-Bondía J., Patras F.: Rota–Baxter algebras and new combinatorial identities. Lett. Math. Phys. 81, 61 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Ebrahimi-Fard K., Manchon D.: The combinatorics of Bogoliubov’s recursion in renormalisation. in ‘Renormalization and Galois theories’. IRMA Lect. Math. Theor. Phys. 15, 179 (2009)

    MathSciNet  Google Scholar 

  12. Ebrahimi-Fard K., Manchon D.: A Magnus- and Fer-type formula in dendriform algebras. Found. Comput. Math. 9, 295 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ebrahimi-Fard K., Manchon D.: Dendriform equations. J. Algebra 322, 4053 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ebrahimi-Fard K., Manchon D., Patras F.: A noncommutative Bohnenblust–Spitzer identity for Rota–Baxter algebras solves Bogoliubov’s recursion. J. Noncommut. Geom. 3, 181 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fried H.: Green’s Functions and Ordered Exponentials. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  16. Gelfand I.M., Krob D., Lascoux A., Leclerc B., Retakh V., Thibon J.Y.: Noncommutative symmetric functions. Adv. Math. 112, 218 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iserles A., Munthe-Kaas H.Z., Nørsett S.P., Zanna A.: Lie-group methods. Acta Numerica 9, 215 (2000)

    Article  Google Scholar 

  18. Kingman J.F.C.: Spitzer’s identity and its use in probability theory. J. Lond. Math. Soc. 37, 309 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  19. Magnus W.: On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 7, 649 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mielnik B., Plebański J.: Combinatorial approach to Baker–Campbell–Hausdorff exponents. Ann. Inst. Henri Poincaré A XII, 215 (1970)

    Google Scholar 

  21. Murua A.: The Hopf algebra of rooted trees, free Lie algebras, and Lie series. Found. Comput. Math. 6, 387 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rota G.C.: Baxter algebras and combinatorial identities I, II. Bull. Am. Math. Soc. 75, 325 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rota G.C.: Ten mathematics problems I will never solve. DMV Mitteilungen 2, 45 (1998)

    MathSciNet  Google Scholar 

  24. Rota G.C., Smith D.A.: Fluctuation theory and Baxter algebras. Istituto Nazionale di Alta Matematica IX, 179 (1972)

    MathSciNet  Google Scholar 

  25. Spitzer F.: A combinatorial lemma and its application to probability theory. Trans. Am. Math. Soc. 82, 323 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  26. Strichartz R.S.: The Campbell–Baker–Hausdorff–Dynkin formula and solutions of differential equations. J. Funct. Anal. 72, 320 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Talkner P., Lutz E., Hanggi P.: Fluctuation theorems: work is not an observable. Phys. Rev. E (Rapid Communication) 75, 050102 (2007)

    Article  ADS  Google Scholar 

  28. Vogel W.: Die kombinatorische Lösung einer Operator-Gleichung. Z. Wahrscheinlichkeitstheorie 2, 122 (1963)

    Article  MATH  Google Scholar 

  29. Wilcox R.M.: Exponential operators and parameter differentiation in quantum physics. J. Math. Phys. 8, 962 (1967)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurusch Ebrahimi-Fard.

Additional information

K. Ebrahimi-Fard is on leave from UHA, Mulhouse, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, M., Chetrite, R., Ebrahimi-Fard, K. et al. Time-Ordering and a Generalized Magnus Expansion. Lett Math Phys 103, 331–350 (2013). https://doi.org/10.1007/s11005-012-0596-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-012-0596-z

Mathematics Subject Classification (2010)

Keywords

Navigation