Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Letters in Mathematical Physics
  3. Article
Haag Duality and the Distal Split Property for Cones in the Toric Code
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

SPECIAL VINBERG CONES

06 April 2021

D. V. ALEKSEEVSKY & V. CORTÉS

Perelman’s Functionals on Cones

03 January 2019

Tristan Ozuch

Redundancy in string cone inequalities and multiplicities in potential functions on cluster varieties

06 July 2022

Gleb Koshevoy & Bea Schumann

Examples around the strong Viterbo conjecture

20 April 2022

Jean Gutt, Michael Hutchings & Vinicius G. B. Ramos

On polytopes and generalizations of the KLT relations

09 December 2020

Nikhil Kalyanapuram

Hilbert and Thompson isometries on cones in JB-algebras

13 October 2018

Bas Lemmens, Mark Roelands & Marten Wortel

The Split and Approximate Split Property in 2D Systems: Stability and Absence of Superselection Sectors

28 March 2022

Pieter Naaijkens & Yoshiko Ogata

Kasteleyn operators from mirror symmetry

04 October 2019

David Treumann, Harold Williams & Eric Zaslow

An index formula for the intersection Euler characteristic of an infinite cone

21 November 2019

Ursula Ludwig

Download PDF
  • Open Access
  • Published: 17 June 2012

Haag Duality and the Distal Split Property for Cones in the Toric Code

  • Pieter Naaijkens1 nAff2 

Letters in Mathematical Physics volume 101, pages 341–354 (2012)Cite this article

  • 457 Accesses

  • 9 Citations

  • Metrics details

Abstract

We prove that Haag duality holds for cones in the toric code model. That is, for a cone Λ, the algebra \({\mathcal{R}_{\Lambda}}\) of observables localized in Λ and the algebra \({\mathcal{R}_{\Lambda^c}}\) of observables localized in the complement Λc generate each other’s commutant as von Neumann algebras. Moreover, we show that the distal split property holds: if \({\Lambda_1 \subset \Lambda_2}\) are two cones whose boundaries are well separated, there is a Type I factor \({\mathcal{N}}\) such that \({\mathcal{R}_{\Lambda_1} \subset \mathcal{N} \subset \mathcal{R}_{\Lambda_2}}\) . We demonstrate this by explicitly constructing \({\mathcal{N}}\) .

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Alicki R., Fannes M., Horodecki M.: A statistical mechanics view on Kitaev’s proposal for quantum memories. J. Phys. A 40, 6451–6467 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bisognano J.J., Wichmann E.H.: On the duality condition for quantum fields. J. Math. Phys. 17, 303–321 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 1. Springer, New York (1987)

    Google Scholar 

  4. Buchholz D.: Product states for local algebras. Commun. Math. Phys 36, 287–304 (1974)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Buchholz D., Doplicher S., Longo R.: On Noether’s theorem in quantum field theory. Ann. Phys. 170, 1–17 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Buchholz D., Mack G., Todorov I.: Localized automorphisms of the U(1)-current algebra on the circle: an instructive example. In: Kastler, D. (ed.) The Algebraic Theory of Superselection Sectors (Palermo, 1989), pp. 356–378. World Scientific Publishers, River Edge (1990)

    Google Scholar 

  7. D’Antoni C., Longo R.: Interpolation by type I factors and the flip automorphism. J. Funct. Anal. 51, 361–371 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Doplicher S., Longo R.: Standard and split inclusions of von Neumann algebras. Invent. Math. 75, 493–536 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Haag R.: Local Quantum Physics: Fields, particles, algebras. Springer, Berlin (1996)

    MATH  Google Scholar 

  10. Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras. In: Elementary Theory, vol. 1. Academic Press, New York (1983)

  11. Keyl M., Matsui T., Schlingemann D., Werner R.F.: Entanglement Haag-duality and type properties of infinite quantum spin chains. Rev. Math. Phys. 18, 935–970 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kitaev A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Matsui, T.: Spectral gap, and split property in quantum spin chains. J. Math. Phys. 51, 015216, 8 (2010)

    Google Scholar 

  14. Naaijkens P.: Localized endomorphisms in Kitaev’s toric code on the plane. Rev. Math. Phys. 23, 347–373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rieffel M.A., Daele A.: The commutation theorem for tensor products of von Neumann algebras. Bull. Lond. Math. Soc. 7, 257–260 (1975)

    Article  ADS  MATH  Google Scholar 

  16. Summers S.J., Werner R.F.: Maximal violation of Bell’s inequalities is generic in quantum field theory. Commun. Math. Phys. 110, 247–259 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Takesaki M.: Theory of Operator Algebras. I. Springer, Berlin (2002)

    MATH  Google Scholar 

Download references

Acknowledgments

This research is funded by the Netherlands Organisation for Scientific Research (NWO) grant no. 613.000.608. The author wishes to thank Klaas Landsman, Michael Müger and Reinhard Werner for valuable feedback on the manuscript.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information

Author notes
  1. Pieter Naaijkens

    Present address: Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstr. 2, 30167, Hannover, Germany

Authors and Affiliations

  1. Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen, Postbus 9010, 6500, GL, Nijmegen, The Netherlands

    Pieter Naaijkens

Authors
  1. Pieter Naaijkens
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Pieter Naaijkens.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Naaijkens, P. Haag Duality and the Distal Split Property for Cones in the Toric Code. Lett Math Phys 101, 341–354 (2012). https://doi.org/10.1007/s11005-012-0572-7

Download citation

  • Received: 21 June 2011

  • Accepted: 30 May 2012

  • Published: 17 June 2012

  • Issue Date: September 2012

  • DOI: https://doi.org/10.1007/s11005-012-0572-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Mathematics Subject Classification (2010)

  • 81R15 (46L60, 81T05, 82B20)

Keywords

  • Haag duality
  • distal split property
  • toric code
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.