Skip to main content
Log in

A Variant of the Mukai Pairing via Deformation Quantization

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let X be a smooth projective complex variety. The Hochschild homology HH(X) of X is an important invariant of X, which is isomorphic to the Hodge cohomology of X via the Hochschild–Kostant–Rosenberg isomorphism. On HH(X), one has the Mukai pairing constructed by Caldararu. An explicit formula for the Mukai pairing at the level of Hodge cohomology was proven by the author in an earlier work (following ideas of Markarian). This formula implies a similar explicit formula for a closely related variant of the Mukai pairing on HH(X). The latter pairing on HH(X) is intimately linked to the study of Fourier–Mukai transforms of complex projective varieties. We give a new method to prove a formula computing the aforementioned variant of Caldararu’s Mukai pairing. Our method is based on some important results in the area of deformation quantization. In particular, we use part of the work of Kashiwara and Schapira on Deformation Quantization modules together with an algebraic index theorem of Bressler, Nest and Tsygan. Our new method explicitly shows that the “Noncommutative Riemann–Roch” implies the classical Riemann–Roch. Further, it is hoped that our method would be useful for generalization to settings involving certain singular varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bressler P., Nest R., Tsygan B.: A Riemann–Roch formula for the microlocal Euler class. IMRN 20, 1033–1044 (1997)

    Article  MathSciNet  Google Scholar 

  2. Bressler P., Nest R., Tsygan B.: Riemann–Roch theorems via deformation quantization I. Adv. Math. 167(1), 1–25 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bressler P., Nest R., Tsygan B.: Riemann–Roch theorems via deformation quantization II. Adv. Math. 167(1), 26–73 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brylinski J.-L.: A differential complex for Poisson manifolds. J. Diff. Geom. 28(1), 93–114 (1988)

    MathSciNet  MATH  Google Scholar 

  5. Caldararu A.: The Mukai pairing I: a categorical approach. N. Y. J. Math. 16, 61–98 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Caldadaru A.: The Mukai pairing II: the Hochschild–Kostant–Rosenberg isomorphism. Adv. Math. 194(1), 34–66 (2005)

    Article  MathSciNet  Google Scholar 

  7. Engeli M., Felder G.: A Riemann–Roch–Hirzebruch formula for traces of differential operators. Ann. Sci. Éc. Norm. Supér. (4) 41(4), 621–653 (2008)

    MathSciNet  Google Scholar 

  8. Feigin B., Felder G., Shoikhet B.: Hochschild cohomology of the Weyl algebra and traces in deformation quantization. Duke Math. J. 127(3), 487–517 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grivaux, J.: On a conjecture of Kashiwara relating Chern and Euler classes of O-modules. preprint, arxiv:0910.5384

  10. Grothendieck A.: On the de Rham cohomology of algebraic varieties. Publ. Math. IHES 29, 95–103 (1966)

    Article  MathSciNet  Google Scholar 

  11. Huybrechts D., Macri E., Stellari P.: Derived equivalences of K3 surfaces and orientation. Duke Math. J. 149(3), 461–507 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Keller B.: On the cyclic homology of ringed spaces and schemes. Doc. Math. 3, 231–259 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Kashiwara, M.: Letter to Pierre Schapira dated 18 Nov 1991

  14. Kashiwara M., Schapira P.: Modules over deformation quantization algebroids: an overview. Lett. Math. Phys. 88(1–3), 79–99 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Kashiwara, M., Schapira, P.: Deformation quantization modules. preprint, arxiv: 1003.3304

  16. Lunts, V.: Lefschetz fixed point theorems for algebraic varieties and DG algebras. preprint, arxiv:1102.2884

  17. Macri E., Stellari P.: Infinitesinal derived Torelli theorem for K3 surfaces. With an appendix by Sukhendu Mehrotra. IMRN 2009(17), 3190–3220 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Markarian, N.: Poincare–Birkhoff–Witt isomorphism, Hochschild homology and Riemann–Roch theorem. Max Planck Institute MPI 2001-52 (2001)

  19. Markarian N.: The Atiyah class, Hochschild cohomology and the Riemann–Roch theorem. J. Lond. Math. Soc. 79(1), 129–143 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pflaum M., Posthuma H., Tang X.: Cyclic cocycles in deformation quantization and higher index theorems. Adv. Math. 223(6), 1958–2021 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ramadoss A.: The relative Riemann–Roch theorem from Hochschild homology. N. Y. J. Math. 14, 643–717 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Ramadoss A.: Some notes on the Feigin–Losev–Shoikhet integral conjecture. J. Noncommut. Geom. 2, 405–448 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ramadoss A.: The Mukai pairing and integral transforms in Hochschild homology. Mosc. Math. J. 10(3), 629–645 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Ramadoss A.: A generalized Hirzebruch Riemann–Roch theorem. C. R. Math. Acad. Sci. Paris 347(5–6), 289–292 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ramadoss A.: The big Chern classes and the Chern character. Int. J. Math. 19(6), 699–746 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schapira P., Schneiders J.-P.: Elliptic pairs I. Relative finiteness and duality. Index theorem for elliptic pairs. Astérisque 224, 5–60 (1994)

    MathSciNet  Google Scholar 

  27. Shklyarov, D.: Hirzebruch Riemann–Roch theorem for DG-algebras. preprint, arxiv: 0710.1937

  28. Willwacher, T.: Cyclic Cohomology of the Weyl algebra. preprint, Arxiv:0804.2812

  29. Töen B.: The homotopy theory of dg-categories and derived Morita theory. Invent. Math. 167(3), 615–667 (2007)

    Article  MathSciNet  Google Scholar 

  30. Thomason, R.W., Trobaugh, T.: Higher algebraic K-theory of schemes and of derived categories. The Grothendieck Festschrift, vol. III, 247–435, Progr. Math., vol. 88. Birkhauser, Boston (1990)

  31. Tsygan, B.: Cyclic homology. Cyclic Homology in Non-Commutative Geometry, 73–113. In: Encyclopaedia Math. Sci. vol. 121. Springer, Berlin (2004)

  32. Yao D.: Higher algebraic K-theory of admissible abelian categories and localization theorems. J. Pure Appl. Algebra 77(3), 263–339 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yekutieli A.: The continuous Hochschild cochain complex of a scheme. Can. J. Math. 54(6), 1319–1337 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay C. Ramadoss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramadoss, A.C. A Variant of the Mukai Pairing via Deformation Quantization. Lett Math Phys 100, 309–325 (2012). https://doi.org/10.1007/s11005-011-0541-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-011-0541-6

Mathematics Subject Classification (2000)

Keywords

Navigation