Skip to main content
Log in

Low Density Limit of BCS Theory and Bose–Einstein Condensation of Fermion Pairs

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the low-density limit of a Fermi gas in the BCS approximation. We show that if the interaction potential allows for a two-particle bound state, the system at zero temperature is well approximated by the Gross–Pitaevskii functional, describing a Bose–Einstein condensate of fermion pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics, 2nd edn. Amer. Math. Soc., Providence (2004)

  2. Bardeen J., Cooper L., Schrieffer J.: Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bloch I., Dalibard J., Zwerger W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008)

    Article  ADS  Google Scholar 

  4. Bogoliubov N.N.: On the theory of superfluidity. J. Phys. (USSR) 11, 23–32 (1947)

    Google Scholar 

  5. Drechsler M., Zwerger W.: Crossover from BCS-superconductivity to Bose-condensation. Ann. Phys. 1, 15–23 (1992)

    Article  Google Scholar 

  6. Frank R.L., Hainzl C., Naboko S., Seiringer R.: The critical temperature for the BCS equation at weak coupling. J. Geom. Anal. 17, 559–568 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Frank, R.L., Hainzl, C., Seiringer, R., Solovej, J.P.: Microscopic derivation of Ginzburg–Landau theory. Preprint, arXiv:1102.4001

  8. Frank, R.L., Hainzl, C., Seiringer, R., Solovej, J.P.: Derivation of Ginzburg–Landau theory for a one-dimensional system with contact interaction. Preprint, arXiv:1103.1866

  9. Ginzburg V.L., Landau L.D.: On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950)

    Google Scholar 

  10. Griffiths R.B.: A proof that the free energy of a spin system is extensive. J. Math. Phys. 5, 1215–1222 (1964)

    Article  ADS  Google Scholar 

  11. Gross E.P.: Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454–466 (1961)

    Article  MATH  Google Scholar 

  12. Gross E.P.: Hydrodynamics of a superfluid condensate. J. Math. Phys. 4, 195–207 (1963)

    Article  ADS  Google Scholar 

  13. Hainzl C., Hamza E., Seiringer R., Solovej J.P.: The BCS functional for general pair interactions. Commun. Math. Phys. 281, 349–367 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Hainzl C., Lewin M., Séré É.: Existence of a stable polarized vacuum in the Bogoliubov–Dirac–Fock approximation. Commun. Math. Phys. 257, 515–562 (2005)

    Article  ADS  MATH  Google Scholar 

  15. Hainzl C., Seiringer R.: Critical temperature and energy gap in the BCS equation. Phys. Rev. B 77, 184517 (2008)

    Article  ADS  Google Scholar 

  16. Hainzl C., Seiringer R.: The BCS critical temperature for potentials with negative scattering length. Lett. Math. Phys. 84, 99–107 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Leggett A.J.: Diatomic Molecules and Cooper Pairs. In: Pekalski, A., Przystawa, R. (eds) Modern Trends in the Theory of Condensed Matter., Springer, Berlin (1980)

    Google Scholar 

  18. Nozières P., Schmitt-Rink S.: Bose condensation in an attractive fermion gas: from weak to strong coupling superconductivity. J. Low Temp. Phys. 59, 195–211 (1985)

    Article  ADS  Google Scholar 

  19. Petrov D.S., Salomon C., Shlyapnikov G.V.: Weakly bound dimers of fermionic atoms. Phys. Rev. Lett. 93, 090404 (2004)

    Article  ADS  Google Scholar 

  20. Pitaevskii L.P.: Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451–454 (1961)

    MathSciNet  Google Scholar 

  21. Randeria M.: Crossover from BCS theory to Bose–Einstein condensation. In: Griffin, A., Snoke, D.W., Stringari, S. (eds) Bose–Einstein Condensation., Cambridge University Press, Cambridge (1995)

    Google Scholar 

  22. Reed M., Simon B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, London (1978)

    MATH  Google Scholar 

  23. Sá de Melo C.A.R., Randeria M., Engelbrecht J.R.: Crossover from BCS to Bose superconductivity: transition temperature and time-dependent Ginzburg–Landau theory. Phys. Rev. Lett. 71, 3202–3205 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Seiringer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hainzl, C., Seiringer, R. Low Density Limit of BCS Theory and Bose–Einstein Condensation of Fermion Pairs. Lett Math Phys 100, 119–138 (2012). https://doi.org/10.1007/s11005-011-0535-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-011-0535-4

Mathematics Subject Classification (2010)

Keywords

Navigation