Abstract
We consider the low-density limit of a Fermi gas in the BCS approximation. We show that if the interaction potential allows for a two-particle bound state, the system at zero temperature is well approximated by the Gross–Pitaevskii functional, describing a Bose–Einstein condensate of fermion pairs.
Similar content being viewed by others
References
Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics, 2nd edn. Amer. Math. Soc., Providence (2004)
Bardeen J., Cooper L., Schrieffer J.: Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)
Bloch I., Dalibard J., Zwerger W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008)
Bogoliubov N.N.: On the theory of superfluidity. J. Phys. (USSR) 11, 23–32 (1947)
Drechsler M., Zwerger W.: Crossover from BCS-superconductivity to Bose-condensation. Ann. Phys. 1, 15–23 (1992)
Frank R.L., Hainzl C., Naboko S., Seiringer R.: The critical temperature for the BCS equation at weak coupling. J. Geom. Anal. 17, 559–568 (2007)
Frank, R.L., Hainzl, C., Seiringer, R., Solovej, J.P.: Microscopic derivation of Ginzburg–Landau theory. Preprint, arXiv:1102.4001
Frank, R.L., Hainzl, C., Seiringer, R., Solovej, J.P.: Derivation of Ginzburg–Landau theory for a one-dimensional system with contact interaction. Preprint, arXiv:1103.1866
Ginzburg V.L., Landau L.D.: On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950)
Griffiths R.B.: A proof that the free energy of a spin system is extensive. J. Math. Phys. 5, 1215–1222 (1964)
Gross E.P.: Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454–466 (1961)
Gross E.P.: Hydrodynamics of a superfluid condensate. J. Math. Phys. 4, 195–207 (1963)
Hainzl C., Hamza E., Seiringer R., Solovej J.P.: The BCS functional for general pair interactions. Commun. Math. Phys. 281, 349–367 (2008)
Hainzl C., Lewin M., Séré É.: Existence of a stable polarized vacuum in the Bogoliubov–Dirac–Fock approximation. Commun. Math. Phys. 257, 515–562 (2005)
Hainzl C., Seiringer R.: Critical temperature and energy gap in the BCS equation. Phys. Rev. B 77, 184517 (2008)
Hainzl C., Seiringer R.: The BCS critical temperature for potentials with negative scattering length. Lett. Math. Phys. 84, 99–107 (2008)
Leggett A.J.: Diatomic Molecules and Cooper Pairs. In: Pekalski, A., Przystawa, R. (eds) Modern Trends in the Theory of Condensed Matter., Springer, Berlin (1980)
Nozières P., Schmitt-Rink S.: Bose condensation in an attractive fermion gas: from weak to strong coupling superconductivity. J. Low Temp. Phys. 59, 195–211 (1985)
Petrov D.S., Salomon C., Shlyapnikov G.V.: Weakly bound dimers of fermionic atoms. Phys. Rev. Lett. 93, 090404 (2004)
Pitaevskii L.P.: Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451–454 (1961)
Randeria M.: Crossover from BCS theory to Bose–Einstein condensation. In: Griffin, A., Snoke, D.W., Stringari, S. (eds) Bose–Einstein Condensation., Cambridge University Press, Cambridge (1995)
Reed M., Simon B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, London (1978)
Sá de Melo C.A.R., Randeria M., Engelbrecht J.R.: Crossover from BCS to Bose superconductivity: transition temperature and time-dependent Ginzburg–Landau theory. Phys. Rev. Lett. 71, 3202–3205 (1993)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hainzl, C., Seiringer, R. Low Density Limit of BCS Theory and Bose–Einstein Condensation of Fermion Pairs. Lett Math Phys 100, 119–138 (2012). https://doi.org/10.1007/s11005-011-0535-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11005-011-0535-4