Letters in Mathematical Physics

, Volume 98, Issue 3, pp 225–287 | Cite as

Vortex Counting and Lagrangian 3-Manifolds

  • Tudor Dimofte
  • Sergei Gukov
  • Lotte HollandsEmail author


To every 3-manifold M one can associate a two-dimensional \({\mathcal{N}=(2, 2)}\) supersymmetric field theory by compactifying five-dimensional \({\mathcal{N}=2}\) super-Yang–Mills theory on M. This system naturally appears in the study of half-BPS surface operators in four-dimensional \({\mathcal{N}=2}\) gauge theories on one hand, and in the geometric approach to knot homologies, on the other. We study the relation between vortex counting in such two-dimensional \({\mathcal{N}=(2, 2)}\) supersymmetric field theories and the refined BPS invariants of the dual geometries. In certain cases, this counting can also be mapped to the computation of degenerate conformal blocks in two-dimensional CFT’s. Degenerate limits of vertex operators in CFT receive a simple interpretation via geometric transitions in BPS counting.

Mathematics Subject Classification (2000)

81T60 81T30 81T40 14N35 


gauge theory vortex equations BPS invariants D-branes conformal field theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Witten, E.: Analytic Continuation Of Chern-Simons Theory. (arXiv:1001.2933)
  2. 2.
    Dimofte, T., Gukov, S., Lenells, J., Zagier, D.: Exact results for perturbative Chern-Simons theory with complex gauge group. Commun. Num. Theor. Phys. 3, 363–443 (2009). (arXiv:0903.2472)
  3. 3.
    Nekrasov, N.A.: Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831–864 (2004). (hep-th/0206 161v1)
  4. 4.
    Alday, L.F., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010). (arXiv:0906.3219)Google Scholar
  5. 5.
    Blau, M., Thompson, G.: Aspects of N T ≥ 2 topological gauge theories and D-branes. Nucl. Phys. B 492, 545–590 (1997). (hep-th/9612143)
  6. 6.
    Blau, M., Thompson, G.: Euclidean SYM theories by time reduction and special holonomy manifolds. Phys. Lett. B 415, 242–252 (1997). (hep-th/9706225)
  7. 7.
    Witten E.: Topological quantum field theory. Commun. Math. Phys. 117, 353 (1988)MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Bershadsky, M., Vafa, C., Sadov, V.: D-Branes and topological field theories. Nucl. Phys. B 463, 420–434 (1996). (hep-th/9511222)
  9. 9.
    Katz, S., Klemm, A., Vafa, C.: Geometric engineering of quantum field theories. Nucl. Phys. B 497 (1997). (hep-th/9609239v2)
  10. 10.
    Gukov, S., Witten, E.: Gauge theory, ramification, and the geometric Langlands program. Curr. Devel. Math. 2006, 35–180 (2008). (hep-th/0612073v2)
  11. 11.
    Gukov, S.: Surface operators and knot homologies. (arXiv:0706.2369)
  12. 12.
    Witten, E.: Fivebranes and knots. (arXiv:1101.3216)
  13. 13.
    Alday, L.F., Gaiotto, D., Gukov, S., Tachikawa, Y., Verlinde, H.: Loop and surface operators in N=2 gauge theory and Liouville modular geometry. (arXiv:0909.0945)
  14. 14.
    Nekrasov, N., Witten, E.: The Omega deformation, Branes, integrability, and Liouville theory. (arXiv:1002.0888)
  15. 15.
    Nakajima, H., Yoshioka, K.: Lectures on instanton counting. (math/0311058)
  16. 16.
    Kronheimer P.B., Mrowka T.S.: Gauge theory for embedded surfaces, I. Topology 32(4), 773–826 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kronheimer P.B., Mrowka T.S.: Gauge theory for embedded surfaces, II. Topology 34(1), 37–97 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Braverman, A.: Instanton counting via affine Lie algebras. I. Equivariant J-functions of (affine) flag manifolds and Whittaker vectors. In: Algebraic Structures and Moduli Spaces. CRM Proc. Lecture Notes, vol. 38, pp. 113–132. Amer. Math. Soc., Providence (2004)Google Scholar
  19. 19.
    Alday, L.F., Tachikawa, Y.: Affine SL(2) conformal blocks from 4d gauge theories. (arXiv:1005.4469)
  20. 20.
    Witten, E.: Solutions of four-dimensional field theories via M theory. Nucl. Phys. B 500(3), (1997). (hep-th/9703166v1)
  21. 21.
    Jaffe, A., Taubes, C.: Vortices and monopoles. In: Progress in Physics, vol. 2. Structure of Static Gauge Theories. Birkhäuser, Boston (1980)Google Scholar
  22. 22.
    Nekrasov, N., Shadchin, S.: ABCD of instantons. Commun. Math. Phys. 253, 359–391 (2004). (hep-th/0404225v2)
  23. 23.
    Braverman, A., Etingof, P.: Instanton counting via affine Lie algebras. II: from Whittaker vectors to the Seiberg-Witten prepotential. (math/0409441)
  24. 24.
    Nekrasov, N.A., Shatashvili, S.L.: Quantization of integrable systems and four dimensional gauge theories. (arXiv:0908.4052)
  25. 25.
    Losev, A.S., Marshakov, A., Nekrasov, N.A.: Small instantons, little strings and free fermions. (hep-th/0302191v3)
  26. 26.
    Nekrasov, N., Okounkov, A.: Seiberg-Witten theory and random partitions. (hep-th/0306238v2)
  27. 27.
    Witten E.: Phases of N = 2 theories in two dimensions. Nucl. Phys. B 403(1–2), 159–222 (1993)MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Givental, A., Kim, B.: Quantum cohomology of flag manifolds and toda lattices. Commun. Math. Phys. 168, 609–642 (1995). (hep-th/9312096v1)
  29. 29.
    Givental, A., Lee, Y.-P.: Quantum K-theory on flag manifolds, finite-difference toda lattices and quantum groups. Invent. Math. 151, 193–219 (2003). (math/0108105v1)
  30. 30.
    Hollowood, T.J., Iqbal, A., Vafa, C.: Matrix models, geometric engineering and elliptic genera. JHEP 03, 069 (2008). (hep-th/0310272v4)
  31. 31.
    Ooguri, H., Vafa, C.: Knot Invariants and topological strings. Nucl. Phys. B 5777, 419–438 (2000). (hep-th/9912123v3)Google Scholar
  32. 32.
    Aganagic, M., Vafa, C.: Mirror symmetry, D-branes and counting holomorphic discs. (hep-th/0012041)
  33. 33.
    Aganagic, M., Klemm, A., Marino, M., Vafa, C.: The topological vertex. Commun. Math. Phys. 254, 425–478 (2005). (hep-th/0305132v3)Google Scholar
  34. 34.
    Karch, A., Lust, D., Smith, D.J.: Equivalence of geometric engineering and Hanany-Witten via fractional branes. Nucl. Phys. B 533, 348–372 (1998). (hep-th/9803232)
  35. 35.
    Aganagic, M., Yamazaki, M.: Open BPS wall crossing and M-theory. Nucl. Phys. B 834, 258–272 (2010). (arXiv:0911.5342)
  36. 36.
    Aganagic, M., Klemm, A., Vafa, C.: Disk instantons, mirror symmetry and the duality web. Z. Naturforsch. A 57 (2002) 1–28. (hep-th/0105045)
  37. 37.
    Marino, M., Vafa, C.: Framed knots at large N. (hep-th/0108064)
  38. 38.
    Gaiotto, D.: Surface operators in N = 2 4d gauge theories. (arXiv:0911.1316)
  39. 39.
    Hanany, A., Hori, K.: Branes and N = 2 theories in two dimensions. Nucl. Phys. B 513, 119–174 (1998). (hep-th/9707192v2)
  40. 40.
    Iqbal, A., Kozcaz, C., Vafa, C.: The refined topological vertex. (hep-th/0701156v2)
  41. 41.
    Awata, H., Kanno, H.: Instanton counting, Macdonald functions and the moduli space of D-branes. JHEP 05, 039 (2005). (hep-th/0502061)
  42. 42.
    Aganagic, M., Marino, M., Vafa, C.: All loop topological string amplitudes from Chern-Simons theory. Commun. Math. Phys. 247, 467–512, (2004). (hep-th/0206164)Google Scholar
  43. 43.
    Macdonald, I.G.: Symmetric functions and Hall polynomials. In: Oxford Mathematical Monographs, 2nd edn. The Clarendon Press/Oxford University Press, New York (1995). With contributions by A. Zelevinsky. Oxford Science PublicationsGoogle Scholar
  44. 44.
    Taubes, C.H.: Lagrangians for the Gopakumar-Vafa conjecture. Adv. Theor. Math. Phys. 5, 139–163 (2001). (math/0201219v2)
  45. 45.
    Gukov, S., Schwarz, A., Vafa, C.: Khovanov-Rozansky homology and topological strings. Lett. Math. Phys. 74, 53–74 (2005). (hep-th/0412243v3)
  46. 46.
    Dunfield, N.M., Gukov, S., Rasmussen, J.: The superpolynomial for knot homologies. Exp. Math. 15(2), 129–160 (2006). (math/0505662v2)Google Scholar
  47. 47.
    Gopakumar, R., Vafa, C.: On the gauge theory/geometry correspondence. Adv. Theor. Math. Phys. 3, 1415–1443 (1999). (hep-th/9811131v1)
  48. 48.
    Aganagic, M., Vafa, C.: G(2) manifolds, mirror symmetry and geometric engineering. (hep-th/0110171)
  49. 49.
    Gomis, J., Okuda, T.: Wilson loops, geometric transitions and bubbling Calabi-Yau’s. JHEP 02, 083 (2007). (hep-th/0612190)
  50. 50.
    Gomis, J., Okuda, T.: D-branes as a bubbling Calabi-Yau. JHEP 07, 005, (2007). (arXiv:0704.3080)
  51. 51.
    Drukker, N., Gomis, J., Okuda, T., Teschner, J.: Gauge theory loop operators and Liouville theory. JHEP 02, 057 (2010). (arXiv: 0909.1105)
  52. 52.
    Di Francesco P., Mathieu P., Senechal D.: Conformal Field Theory. Springer, New York (1997)zbMATHCrossRefGoogle Scholar
  53. 53.
    Gaiotto, D.: N = 2 dualities. (arXiv:0904.2715)
  54. 54.
    Wyllard, N.: A N-1 conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories. JHEP 11, 002 (2009). (arXiv:0907.2189)
  55. 55.
    Kanno, S., Matsuo, Y., Shiba, S., Tachikawa, Y.: N = 2 gauge theories and degenerate fields of Toda theory. Phys. Rev. D 81, 046004 (2010). (arXiv:0911.4787)
  56. 56.
    Carlsson, E., Okounkov, A.: Exts and vertex operators. (arXiv:0801.2565)
  57. 57.
    Aganagic, M., Dijkgraaf, R., Klemm, A., Marino, M., Vafa, C.: Topological strings and integrable hierarchies. Commun. Math. Phys. 261, 451–516, (2006). (hep-th/0312085v1)Google Scholar
  58. 58.
    Bouchard, V., Klemm, A., Marino, M., Pasquetti, S.: Remodeling the B-model. Commun. Math. Phys. 287, 117–178 (2009). (arXiv: 0709.1453)Google Scholar
  59. 59.
    Dijkgraaf, R., Hollands, L., Sulkowski, P., Vafa, C. Supersymmetric gauge theories, intersecting branes and free fermions. JHEP 0802, 106 (2008). (arXiv:0709.4446)
  60. 60.
    Gaiotto, D.: Asymptotically free N = 2 theories and irregular conformal blocks. (arXiv:0908.0307)
  61. 61.
    Shadchin, S.: On F-term contribution to effective action. JHEP 08, 052 (2007). (hep-th/0611278)

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.California Institute of TechnologyPasadenaUSA
  2. 2.University of CaliforniaSanta BarbaraUSA

Personalised recommendations