Skip to main content
Log in

Pseudo-Hyperkähler Geometry and Generalized Kähler Geometry

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss the conditions for additional supersymmetry and twisted super-symmetry in N = (2, 2) supersymmetric nonlinear sigma models described by one left and one right semi-chiral superfield and carrying a pair of non-commuting complex structures. Focus is on linear non-manifest transformations of these fields that have an algebra that closes off-shell. We find that additional linear supersymmetry has no interesting solution, whereas additional linear twisted supersymmetry has solutions with interesting geometrical properties. We solve the conditions for invariance of the action and show that these solutions correspond to a bi-hermitian metric of signature (2, 2) and a pseudo-hyperkähler geometry of the target space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gualtieri, M.: Generalized complex geometry. Oxford University DPhil thesis. arXiv:math.DG/0401221; arXiv:math.DG/0703298 (2004)

  2. Lindström U., Roček M., von Unge R., Zabzine M.: Generalized Kähler manifolds and off-shell supersymmetry. Commun. Math. Phys. 269, 833 (2007) arXiv:hep-th/0512164

    Article  ADS  MATH  Google Scholar 

  3. Lindström U., Ivanov I.T., Roček M.: New N = 4 superfields and sigma models. Phys. Lett. B 328, 49 (1994) arXiv:hep-th/9401091

    Article  MathSciNet  ADS  Google Scholar 

  4. Davidov, J., Grantcharov, G., Mushkarov, O.: Geometry of neutral metrics in dimension four. arXiv:0804.2132v1 [math.DG] (2008)

  5. Law P.R.: Neutral geometry and the Gauss-Bonnet theorem for two-dimensional pseudo-Riemannian manifolds. Rocky Mt. J. Math. 22, 1365–1383 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Matsushita Y.: Fields of 2-planes and two kinds of almost complex structures on compact 4-dimensional manifolds. Math. Z. 207, 281–291 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. de Andres, L.C., Fernandez, M., Ivanov, S., Santisteban, J.A., Ugarte, L., Vassilev, D.: Explicit Quaternionic contact structures, Sp(n)-structures and Hyper Kaehler metrics. arXiv:0903.1398v1 [math.DG] (2010)

  8. Dunajski, M., West, S.: Anti-self-dual conformal structures in neutral signature. math/0610280 [math.DG] (2008)

  9. Ooguri H., Vafa C.: Self-duality and N = 2 string magic. Mod. Phys. Lett. A 5, 1389–1398 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Hull C.M.: Actions for (2,1) sigma models and strings. Nucl. Phys. B 509, 252–272 (1998) arXiv:hep-th/9702067

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Abou-Zeid M., Hull C.M.: The geometry of sigma-models with twisted supersymmetry. Nucl. Phys. B 561, 293–315 (1999) arXiv:hep-th/9907046

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Göteman M., Lindström U., Roček M., Ryb I.: Sigma models with off-shell N = (4,4) supersymmetry and non-commuting complex structures. J. High Energy Phys. 1009, 055 (2010) arXiv:0912.4724 [hep-th]

    Article  Google Scholar 

  13. Dunajski M.: Hyper-complex four-manifolds from the Tzitzica equation. J. Math. Phys. 43, 651–658 (2002) arXiv:nlin/0108017

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Libermann P.: Sur le probleme d’equivalence de certains structures infinitesimales. Ann. Mat. Pura Appl. 36, 27–120 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ivanov S., Zamkovoy S.: Parahermitian and paraquaternionic manifolds. Differ. Geom. Appl. 23, 205–234 (2005) arXiv:math/0310415

    Article  MathSciNet  MATH  Google Scholar 

  16. Andrada, A., Salamon, S.: Complex product structures on Lie algebras. arXiv:math/0305102v1 [math.DG]

  17. Davidov, J., Grantcharov, G., Muskarov, O.: Neutral hypercomplex structures in dimension four. Talk by G. Grantcharov at “Supersymmetry in complex geometry” at the IPMU of the University of Tokyo, January 2009

  18. Boyer C.: A note on hyperhermitian four-manifolds. Am. Math. Soc. 102, 157–164 (1988)

    MathSciNet  MATH  Google Scholar 

  19. Kamada H.: Neutral hyperkähler structures on primary Kodaira surfaces. Tsukuba J. Math. 23, 321–332 (1999)

    MathSciNet  MATH  Google Scholar 

  20. Hitchin N.: Hypersymplectic quotients. Acta Acad. Sci. Tauriensis 124, 169 (1990)

    Google Scholar 

  21. Lindström U., Roček M., von Unge R., Zabzine M.: Linearizing generalized Kähler geometry. J. High Energy Phys. 0704, 061 (2007) arXiv:hep-th/0702126

    Article  ADS  Google Scholar 

  22. Lindström, U., Roček, M., von Unge, R., Zabzine, M.: A potential for generalized Kähler geometry. arXiv:hep-th/0703111

  23. Gates S.J., Hull C.M., Roček M.: Twisted multiplets and new supersymmetric nonlinear sigma models. Nucl. Phys. B 248, 157 (1984)

    Article  ADS  Google Scholar 

  24. Sevrin A., Troost J.: Off-shell formulation of N =  2 non-linear sigma-models. Nucl. Phys. B 492, 623–646 (1997) arXiv:hep-th/9610102

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Buscher T., Lindström U., Roček M.: New supersymmetric sigma models with Wess-Zumino terms. Phys. Lett. B 202, 94 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  26. Dunajski M.: The twisted photon associated to hyper-Hermitian four-manifolds. J. Geom. Phys. 30, 266–281 (1999) arXiv:math/9808137

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Lindström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Göteman, M., Lindström, U. Pseudo-Hyperkähler Geometry and Generalized Kähler Geometry. Lett Math Phys 95, 211–222 (2011). https://doi.org/10.1007/s11005-010-0456-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-010-0456-7

Mathematics Subject Classification (2010)

Keywords

Navigation