Skip to main content
Log in

The Number of Master Integrals is Finite

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

For a fixed Feynman graph one can consider Feynman integrals with all possible powers of propagators and try to reduce them, by linear relations, to a finite subset of integrals, the so-called master integrals. Up to now, there are numerous examples of reduction procedures resulting in a finite number of master integrals for various families of Feynman integrals. However, up to now it was just an empirical fact that the reduction procedure results in a finite number of irreducible integrals. It this paper we prove that the number of master integrals is always finite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ’t Hooft G., Veltman M.: Regularization and renormalization of Gauge fields. Nucl. Phys. B 44, 189 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  2. Bollini C.G., Giambiagi J.J.: On spectral-function sum rules. Nuovo Cim. 12B, 20 (1972)

    Google Scholar 

  3. Smirnov V.A.: Feynman Integral Calculus, pp. 283. Springer, Berlin (2006)

    Google Scholar 

  4. Chetyrkin K.G., Tkachov F.V.: Integration by parts: The algorithm to calculate beta functions in 4 loops. Nucl. Phys. B 192, 159 (1981)

    Article  ADS  Google Scholar 

  5. Laporta S.: High-precision calculation of multi-loop Feynman integrals by difference equations. Int. J. Mod. Phys. A 15, 5087 (2000) [hep-ph/0102033]

    MathSciNet  ADS  Google Scholar 

  6. Gehrmann T., Remiddi E.: Two-loop master integrals for γ* → 3 jets: the planar topologies. Nucl. Phys. B 601, 248 (2001) [hep-ph/0008287]

    Article  ADS  Google Scholar 

  7. Gehrmann T., Remiddi E.: Two-loop master integrals for γ* → 3 jets: the non-planar topologies. Nucl. Phys. B 601, 287 (2001) [hep-ph/0101124]

    Article  ADS  Google Scholar 

  8. Anastasiou C., Lazopoulos A.: Automatic integral reduction for higher order perturbative calculations. JHEP 0407, 046 (2004) [hep-ph/0404258]

    Article  ADS  Google Scholar 

  9. Smirnov A.V.: Algorithm FIRE - Feynman integral reduction. JHEP 0810, 107 (2008) [0807.3243]

    Article  ADS  Google Scholar 

  10. Studerus, C.: Reduze - Feynman integral reduction in C+. [0912.2546]

  11. Smirnov, A.V., Smirnov, V.A.: On the reduction of Feynman integrals to master integrals. PoS ACAT 2007:085 [0707.3993]

  12. Lee R.N.: Group structure of the integration-by-part identities and its application to the reduction of multiloop integrals. JHEP 0807, 031 (2008) [0804.3008]

    Article  ADS  Google Scholar 

  13. Coutinho, S.C.: A primer of algebraic D-modules. In: London Mathematical Society Student Texts, vol. 33. Cambridge University Press, Cambridge (1995)

  14. Kapusta J.I., Gale C.: Finite-Temperature Field Theory Principles and Applications, 2nd edn. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  15. Schröder Y.: Loops for hot QCD. Nucl. Phys. Proc. Suppl. B 183, 296 (2008) [arXiv:0807.0500 [hep-ph]]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Smirnov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnov, A.V., Petukhov, A.V. The Number of Master Integrals is Finite. Lett Math Phys 97, 37–44 (2011). https://doi.org/10.1007/s11005-010-0450-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-010-0450-0

Mathematics Subject Classification (2000)

Keywords

Navigation