Skip to main content
Log in

Some Counterexamples in the Theory of Quantum Isometry Groups

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

By considering spectral triples on \({S^{2}_{\mu, c}\,\, (c >0 )}\) constructed by Chakraborty and Pal (Commun Math Phys 240(3):447–456, 2000), we show that in general the quantum group of volume and orientation preserving isometries (in the sense of Bhowmick and Goswami in J Funct Anal 257:2530–2572, 2009) for a spectral triple of compact type may not have a C*-action, and moreover, it can fail to be a matrix quantum group. It is also proved that the category with objects consisting of those volume and orientation preserving quantum isometries which induce C*-action on the C* algebra underlying the given spectral triple, may not have a universal object.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banica T.: Quantum automorphism groups of small metric spaces. Pac. J. Math. 219(1), 27–51 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Banica T.: Quantum automorphism groups of homogeneous graphs. J. Funct. Anal. 224(2), 243–280 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bhowmick J., Goswami D.: Quantum isometry groups: examples and computations. Commun. Math. Phys. 285(2), 421–444 (2009) arXiv0707.2648

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Bhowmick J., Goswami D.: Quantum group of orientation preserving Riemannian Isometries. J. Funct. Anal. 257, 2530–2572 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bichon J.: Quantum automorphism groups of finite graphs. Proc. Am. Math. Soc. 131(3), 665–673 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chakraborty P.S., Pal A.: Spectral triples and associated Connes-de Rham complex for the quantum SU(2) and the quantum sphere. Commun. Math. Phys. 240(3), 447–456 (2003)

    MATH  MathSciNet  ADS  Google Scholar 

  7. Connes A.: Noncommutative Geometry. Academic Press, London (1994)

    MATH  Google Scholar 

  8. Connes A., Dubois-Violette M.: Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples. Commun. Math. Phys. 230(3), 539–579 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Dabrowski, L.: Spinors and theta deformations. math.QA/0808.0440

  10. Davidson, K.R.: C* Algebras by Examples. Hindustan Book Agency, New Delhi

  11. Goswami D.: Quantum Group of isometries in classical and non commutative geometry. Commun. Math. Phys. 285(1), 141–160 (2009) arXiv 0704.0041

    Article  MathSciNet  ADS  Google Scholar 

  12. Goswami D.: Twisted entire cyclic cohomology, JLO cocycles and equivariant spectral triples. Rev. Math. Phys. 16(5), 583–602 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Podles P.: Quantum spheres. Lett. Math. Phys. 14, 193–202 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Sheu A.J.-L.: Quantization of the Poisson SU(2) and its Poisson homogeneous space—the 2-sphere. Commun. Math. Phys. 135, 217–232 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Wang S.: Free products of compact quantum groups. Commun. Math. Phys. 167(3), 671–692 (1995)

    Article  MATH  ADS  Google Scholar 

  16. Wang S.: Quantum symmetry groups of finite spaces. Commun. Math. Phys. 195, 195–211 (1998)

    Article  MATH  ADS  Google Scholar 

  17. Wang S.: Structure and isomorphism classification of compact quantum groups A u (Q) and B u (Q). J. Oper. Theory 48, 573–583 (2002)

    MATH  Google Scholar 

  18. Wang S.: Ergodic actions of universal quantum groups on operator algebras. Commun. Math. Phys. 203(2), 481–498 (1999)

    Article  MATH  ADS  Google Scholar 

  19. Woronowicz S.L.: Compact matrix pseudogroups. Commun. Math. Phys. 111(4), 613–665 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Woronowicz, S.L.: Compact quantum groups. In: Connes, A., et al. (eds.) Symétries quantiques (Quantum symmetries) (Les Houches, 1995), pp. 845–884. Elsevier, Amsterdam (1998)

  21. Woronowicz, S.L.: Pseudogroups, pseudospaces and Pontryagin duality. In: Proceedings of the International Conference on Mathematical Physics. Lecture Notes in Physics, Lausane, vol. 116, pp. 407–412 (1979)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotishman Bhowmick.

Additional information

J. Bhowmick gratefully acknowledges the support from National Board of Higher Mathematics, India.

D. Goswami was partially supported by a project on ‘Noncommutative Geometry and Quantum Groups’ funded by Indian National Science Academy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhowmick, J., Goswami, D. Some Counterexamples in the Theory of Quantum Isometry Groups. Lett Math Phys 93, 279–293 (2010). https://doi.org/10.1007/s11005-010-0409-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-010-0409-1

Mathematics Subject Classification (2010)

Keywords

Navigation