Skip to main content
Log in

Singularity Confinement Property for the (Non-Autonomous) Adler–Bobenko–Suris Integrable Lattice Equations

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We examine the integrable lattice systems proposed by Adler, Bobenko and Suris from the point of view of the existence of integrable non-autonomous forms. We show, using the singularity confinement criterion, that both the H and Q families can be deautonomised, leading to a lattice with variable step in each dimension, as already assumed in the original paper. A new linearisable equation is identified as a special case of the Q4 lattice. We present its linearisation and obtain its non-autonomous extension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler V.E., Bobenko A.I., Suris Yu.B.: Classification of integrable equations on quad-graphs. The consistency approach. Commun. Math. Phys. 233, 513 (2003)

    MATH  MathSciNet  ADS  Google Scholar 

  2. Adler V.E.: Bäcklund transformation for the Krichever–Novikov equation. Int. Math. Res. Not. 1, 1 (1998)

    Article  Google Scholar 

  3. Viallet C.-M.: Integrable lattice maps: Q 5, a rational version of Q 4. Glasgow Math. J. A 51, 157 (2009)

    Article  MathSciNet  Google Scholar 

  4. Nijhoff F.: Lax pair for the Adler (lattice Krichever–Novikov) system. Phys. Lett. A 297, 49 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Hietarinta J.: Searching for CAC-maps. J. Nonlinear Math. Phys. 12, 223 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Grammaticos B., Ramani A., Papageorgiou V.: Do integrable mappings have the Painlevé, property?. Phys. Rev. Lett. 67, 1825 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Hietarinta J., Viallet C.-M.: Singularity confinement and chaos in discrete systems. Phys. Rev. Lett. 81, 325 (1998)

    Article  ADS  Google Scholar 

  8. Ablowitz M.J., Halburd R., Herbst B.: On the extension of the Painlevé property to difference equations. Nonlinearity 13, 889 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Ramani A., Grammaticos B., Lafortune S., Ohta Y.: Linearisable mappings and the low-growth criterion. J. Phys. A 33, L287 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Grammaticos B., Ramani A., Lafortune S.: The Gambier mapping revisited. Phys. A 253, 260 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Grammaticos, B., Ramani, A.: Toda equations as paradigms of integrable (continuous, discrete and ultradiscrete) systems. Reports of the RIAM Symposium 69 (2007)

  12. Ramani A., Grammaticos B., Carstea A.S.: On the non-autonomous form of the Q4 mapping and its relation to elliptic Painlevé equations. J. Phys. A 42, FT322003 (2009)

    MathSciNet  Google Scholar 

  13. Ramani A., Grammaticos B., Tamizhmani T.: On the alternate discrete Painlevé equations and related systems. Séminaires et Congrès de la SMF 14, 205 (2006)

    MathSciNet  Google Scholar 

  14. Hydon, P.E., Viallet, C.-M.: Asymmetric integrable quad-graph equations, preprint (2009), arXiv:0906.2339v1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basil Grammaticos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grammaticos, B., Ramani, A. Singularity Confinement Property for the (Non-Autonomous) Adler–Bobenko–Suris Integrable Lattice Equations. Lett Math Phys 92, 33–45 (2010). https://doi.org/10.1007/s11005-010-0378-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-010-0378-4

Mathematics Subject Classification (2000)

Keywords

Navigation