Skip to main content
Log in

On the Geometric Distance Between Quantum States with Positive Partial Transposition and Private States

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove an analytic positive lower bound for the geometric distance between entangled positive partial transpose (PPT) states of a broad class and any private state that delivers one secure key bit. Our proof holds for any Hilbert space of finite dimension. Although our result is proven for a specific class of PPT states, we show that our bound nonetheless holds for all known entangled PPT states with non-zero distillable key rates, irrespective of whether they are in our special class or not. Thus, our result naturally leads to the conjecture of impossibility of using PPT-bound entangled state in physical implementation of quantum key distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Bennett C.H., Wiesner S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Horodecki M., Horodecki P., Horodecki R.: Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature?. Phys. Rev. Lett 80, 5239–5242 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Shor P.W., Preskill J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett 85, 441–444 (2000)

    Article  ADS  Google Scholar 

  5. Curty M., Lewenstein M., Lütkenhaus N.: Entanglement as a precondition for secure quantum key distribution. Phys. Rev. Lett. 92, 217903 (2004)

    Article  ADS  Google Scholar 

  6. Curty M., Gühen O., Lewenstein M., Lütkenhaus N.: Detecting two-party quantum correlations in quantum-key-distribution protocols. Phys. Rev. A 71, 022306 (2005)

    Article  ADS  Google Scholar 

  7. Horodecki P., Horodecki M., Horodecki R.: Bound entanglement can be activated. Phys. Rev. Lett. 82, 1056 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Masanes L.: All bipartite entangled states are useful for information processing. Phys. Rev. Lett. 96, 150501 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  9. Peres A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Horodecki M., Horodecki P., Horodecki R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Horodecki K., Horodecki M., Horodecki P., Oppenheim J.: Secure key from bound entanglement. Phys. Rev. Lett 94, 160502 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  12. Horodecki K., Horodecki M., Horodecki P., Oppenheim J.: General paradigm for distilling classical key from quantum states. IEEE Trans. Inf. Theory 55, 1898 (2009)

    Article  Google Scholar 

  13. Chi D.P., Choi J.W., Kim J.S., Kim T., Lee S.: Bound entangled states with nonzero distillable key rate. Phys. Rev. A 75, 032306 (2007)

    Article  ADS  Google Scholar 

  14. Horodecki, P., Augusiak, R.: On quantum cryptography with bipartite bound entangled states. In: Angelakis, D.G., et al. (eds.) Quantum Information Processing: From Theory to Experiment, NATO Science Series III, vol. 199, pp. 19–29. IOS Press, Amsterdam (2006) arXiv:0712.3999

  15. Horodecki K., Pankowski L., Horodecki M., Horodecki P.: Low dimensional bound entanglement with one-way distillable cryptographic key. IEEE Trans. Inf. Theory 54, 2621 (2008)

    Article  MathSciNet  Google Scholar 

  16. Kim J.S., Das A., Sanders B.C.: Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity. Phys. Rev. A 79, 012329 (2009)

    Article  ADS  Google Scholar 

  17. Vidal G., Werner R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  18. Dür D., Cirac J.I., Lewenstein M., Bruß D.: Distillabillty and partial transposition in bipartite system. Phys. Rev. A 61, 062313 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  19. Bennett C.H., DiVincenzo D.P., Smolin J.A., Wootters W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong San Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.S., Sanders, B.C. On the Geometric Distance Between Quantum States with Positive Partial Transposition and Private States. Lett Math Phys 92, 67–79 (2010). https://doi.org/10.1007/s11005-010-0376-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-010-0376-6

Mathematics Subject Classification (2000)

Keywords

Navigation