Skip to main content
Log in

Q-systems as Cluster Algebras II: Cartan Matrix of Finite Type and the Polynomial Property

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We define the cluster algebra associated with the Q-system for the Kirillov–Reshetikhin characters of the quantum affine algebra \({U_q(\widehat{\mathfrak {g}})}\) for any simple Lie algebra \({\mathfrak {g}}\), generalizing the simply-laced case treated in (Kedem in Q-systems as cluster algebras. arXiv:0712.2695 [math.RT], 2007). We describe some special properties of this cluster algebra, and explain its relation to the deformed Q-systems which appeared on our proof of the combinatorial-KR conjecture. We prove that the polynomiality of the cluster variables in terms of the “initial cluster seeds”, including solutions of the Q-system, is a consequence of the Laurent phenomenon and the boundary conditions. We also define the cluster algebra associated with T-systems, or general systems which take the form of T-systems in the bipartite case. Such systems describe the recursion relations satisfied by the q-characters of Kirillov–Reshetikhin modules and also appear in the categorification picture in terms of preprojective algebras of Geiss, Leclerc and Schröer. We give a formulation of both Q-systems and generalized T-systems as cluster algebras with coefficients. This provides a proof of the polynomiality of solutions of all such “generalized T-systems” with appropriate boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Kirillov, A.N., Reshetikhin, N.Yu.: Formulas for the multiplicities of the occurrence of irreducible components in the tensor product of representations of simple Lie algebras, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 205 (1993), no. Differentsialnaya Geom. Gruppy Li i Mekh. 13, 30–37, 179

  2. Hatayama G., Kuniba A., Okado M., Takagi T., Yamada Y.: Remarks on fermionic formula, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), Contemp. Math., vol. 248, pp. 243–291. Amer. Math. Soc., Providence, RI (1999)

    Google Scholar 

  3. Hatayama G., Kuniba A., Okado M., Takagi T., Tsuboi Z.: Paths, crystals and fermionic formulae, MathPhys Odyssey, 2001, Prog. Math. Phys., vol. 23, pp. 205–272. Birkhäuser Boston, Boston, MA (2002)

    Google Scholar 

  4. Hernandez, D.: Kirillov–reshetikhin conjecture: the general case. arXiv:0704.2838 [math.QA]

  5. Atsuo K., Tomoki N.: Bethe equation at q = 0, Möbius inversion formula, and weight multiplicities: II. X n case. J. Algebra 251, 577–618 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Atsuo K., Tomoki N., Junji S.: Functional relations in solvable lattice models. I. Functional relations and representation theory. Internat J. Modern Phys. A 9(30), 5215–5266 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hiraku N.: t-analogs of q-characters of Kirillov–Reshetikhin modules of quantum affine algebras. Represent. Theory 7, 259–274 (2003) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hernandez D.: The Kirillov–Reshetikhin conjecture and solutions of T-systems. J. Reine Angew. Math. 596, 63–87 (2006)

    MATH  MathSciNet  Google Scholar 

  9. Sergey F., Andrei Z.: Cluster algebras. I. Foundations. J. Amer. Math. Soc. 15(2), 497–529 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Sergey F., Andrei Z.: Y-systems and generalized associahedra. Ann. of Math. (2) 158(3), 977–1018 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kedem, R.: Q-systems as cluster algebras. arXiv:0712.2695 [math.RT] (2007)

  12. Di Francesco, P., Kedem, R.: Proof of the combinatorial Kirillov–Reshetikhin conjecture arXiv:0710.4415 [math:QA] (IMRN, to appear)

  13. Sergey F., Andrei Z.: The Laurent phenomenon. Adv. in Appl. Math. 28(2), 119–144 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chari V., Pressley A.: A guide to quantum groups. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  15. Sergey F., Andrei Z.: Cluster algebras. IV. Coefficients. Compos. Math. 143(1), 112–164 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Berenstein A., Fomin S., Zelevinsky A.: Cluster algebras III: upper bounds and double Bruhat cells. Duke Math. J. 126(1), 1–52 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Frenkel, E., Reshetikhin, N.: The q-characters of representations of quantum affine algebras and deformations of W-algebras. In: Recent developments in quantum affine algebras and related topics (Raleigh, NC 1998). Contemp. Math. 248, 163–205 (1999)

  18. Geiss, C., Leclerc, B., Schröer, J.: Rigid modules over preprojective algebras ii: the Kac-Moody case, arXiv:math/0703039 [math.RT]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Di Francesco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Francesco, P., Kedem, R. Q-systems as Cluster Algebras II: Cartan Matrix of Finite Type and the Polynomial Property. Lett Math Phys 89, 183–216 (2009). https://doi.org/10.1007/s11005-009-0354-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-009-0354-z

Mathematics Subject Classification (2000)

Keywords

Navigation