Skip to main content
Log in

An Explicit Formula for the Natural and Conformally Invariant Quantization

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Lecomte (Prog Theor Phys Suppl 144:125–132, 2001) conjectured the existence of a natural and conformally invariant quantization. In Mathonet and Radoux (Existence of natural and conformally invariant quantizations of arbitrary symbols, math.DG 0811.3710), we gave a proof of this theorem thanks to the theory of Cartan connections. In this paper, we give an explicit formula for the natural and conformally invariant quantization of trace-free symbols thanks to the method used in Mathonet and Radoux and to tools already used in Radoux [Lett Math Phys 78(2):173–188, 2006] in the projective setting. This formula is extremely similar to the one giving the natural and projectively invariant quantization in Radoux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bordemann, M.: Sur l’existence d’une prescription d’ordre naturelle projectivement invariante, math.DG/0208171

  2. Bouarroudj S.: Formula for the projectively invariant quantization on degree three. C. R. Acad. Sci. Paris Sér. I Math. 333(4), 343–346 (2001)

    MATH  ADS  MathSciNet  Google Scholar 

  3. Čap A., Slovák J., Souček V.: Invariant operators on manifolds with almost Hermitian symmetric structures. I. Invariant differentiation. Acta Math. Univ. Comenian. (N.S.) 66(1), 33–69 (1997)

    MATH  MathSciNet  Google Scholar 

  4. Duval C., Lecomte P., Ovsienko V.: Conformally equivariant quantization: existence and uniqueness. Ann. Inst. Fourier (Grenoble) 49(6), 1999–2029 (1999)

    MATH  MathSciNet  Google Scholar 

  5. Duval C., Ovsienko V.: Conformally equivariant quantum Hamiltonians. Selecta Math. (N.S.) 7(3), 291–320 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Duval C., Ovsienko V.: Projectively equivariant quantization and symbol calculus: noncommutative hypergeometric functions. Lett. Math. Phys. 57(1), 61–67 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eastwood M.: Higher symmetries of the Laplacian. Ann. Math. (2) 161(3), 1645–1665 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kobayashi, S.: Transformation Groups in Differential Geometry. Springer, New York, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70 (1972)

  9. Kroeske, J.: Invariant bilinear differential pairings on parabolic geometries. Thesis, School of Pure Mathematics, University of Adelaide, June (2008)

  10. Lecomte, P.B.A.: Towards projectively equivariant quantization. Prog. Theor. Phys. Suppl. 144:125–132 (2001). Noncommutative geometry and string theory (Yokohama, 2001)

    Google Scholar 

  11. Lecomte P.B.A., Ovsienko V.Yu.: Projectively equivariant symbol calculus. Lett. Math. Phys. 49(3), 173–196 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mathonet P., Radoux F.: Cartan connections and natural and projectively equivariant quantizations. Lond. Math. Soc. 76, 87–104 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mathonet, P., Radoux, F.: Existence of natural and conformally invariant quantizations of arbitrary symbols. math.DG 0811.3710

  14. Radoux F.: Explicit formula for the natural and projectively equivariant quantization. Lett. Math. Phys. 78(2), 173–188 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Radoux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radoux, F. An Explicit Formula for the Natural and Conformally Invariant Quantization. Lett Math Phys 89, 249–263 (2009). https://doi.org/10.1007/s11005-009-0335-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-009-0335-2

Mathematics Subject Classification (2000)

Keywords

Navigation