Skip to main content
Log in

Complete Set of Eigenfunctions of the Quantum Toda Chain

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The integral representation of the eigenfunctions of quantum periodic Toda chain constructed by Kharchev and Lebedev is revisited. We prove that Pasquier and Gaudin’s solutions of the Baxter equation provides a complete set of eigenfunctions under this integral representation. This will, in addition, show that the joint spectrum of commuting Hamiltonians of the quantum periodic Toda chain is simple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon S.: Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N-body Schrödinger operator. Mathematical Notes, vol. 29. Princeton University Press, Princeton (1982)

    Google Scholar 

  2. Berezin F.A., Shubin M.A.: The Schrödinger equation. Mathematics and its Applications (Soviet Series). Kluwer, Dordrecht (1991)

    Google Scholar 

  3. Baxter R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  4. Carmona R., Simon B.: Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems. V. Lower bounds and path integrals. Commun. Math. Phys. 80, 59–98 (1981)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Gaudin M., Pasquier V.: The periodic Toda chain and a matrix generalization of the Bessel function’s recursion relations. J. Phys. A Math. Gen. 25, 5243–5252 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Gerasimov A., Kharchev S., Lebedev D.: Representation theory and quantum inverse scattering method: the open Toda chain and the hyperbolic Sutherland model. Int. Math. Res. Notices 17, 823–854 (2004)

    Article  MathSciNet  Google Scholar 

  7. Gilbarg D., Trudinger N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    MATH  Google Scholar 

  8. Gutzwiller M.C.: The quantum mechanical Toda lattice. Ann. Phys. 124, 347–381 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  9. Gutzwiller M.C.: The quantum mechanical Toda lattice II. Ann. Phys. 133, 304–331 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  10. Kharchev S., Lebedev D.: Integral representation for the eigenfunctions of quantum periodic Toda chain. Math. Phys. 50, 53–77 (1999)

    MATH  MathSciNet  Google Scholar 

  11. Kharchev S., Lebedev D.: Integral representations for the eigenfunctions of quantum open and periodic Toda chains from QISM formalism. J. Phys. A Math. Gen. 34, 2247–2258 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Levin B.Ja.: Distribution of Zeros of Entire Functions. American Mathematical Society, Providence (1964)

    MATH  Google Scholar 

  13. Pribitkin W.: Laplace’s integral, the gamma function, and beyond. Am. Math. Month. 109(3), 235–245 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Semenov-Tian-Shansky M.: Quantization of open Toda lattice. Encyclopaedia of Math. Sciences, vol. 16. Springer, Berlin (1994)

    Google Scholar 

  15. Sklyanin E.K.: The quantum Toda chain. Lect. Notes Phys. 226, 196–233 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  16. Tahtadžjan L.A., Faddeev L.D.: The quantum method for the inverse problem and the XYZ Heisenberg model. Uspekhi Mat. Nauk 34(5), 13–63 (1979)

    MathSciNet  Google Scholar 

  17. Whittaker E.T., Watson G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, D. Complete Set of Eigenfunctions of the Quantum Toda Chain. Lett Math Phys 87, 209–223 (2009). https://doi.org/10.1007/s11005-009-0296-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-009-0296-5

Mathematics Subject Classification (2000)

Keywords

Navigation