Skip to main content
Log in

The Invertible Double of Elliptic Operators

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

First, we review the Dirac operator folklore about basic analytic and geometrical properties of operators of Dirac type on compact manifolds with smooth boundary and on closed partitioned manifolds and show how these properties depend on the construction of a canonical invertible double and are related to the concept of the Calderón projection. Then we summarize a recent construction of a canonical invertible double for general first order elliptic differential operators over smooth compact manifolds with boundary. We derive a natural formula for the Calderón projection which yields a generalization of the famous Cobordism Theorem. We provide a list of assumptions to obtain a continuous variation of the Calderón projection under smooth variation of the coefficients. That yields various new spectral flow theorems. Finally, we sketch a research program for confining, respectively closing, the last remaining gaps between the geometric Dirac operator type situation and the general linear elliptic case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agranovich M.S., Markus A.S.: On spectral properties of elliptic pseudo-differential operators far from selfadjoint ones. Z. Anal. Anwend. 8, 237–260 (1989)

    MATH  MathSciNet  Google Scholar 

  2. Bär C.: Zero sets of semilinear elliptic systems of first order. Invent. Math. 138, 183–202 (1999) math.AP/9805065

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Bleecker, D., Booß-Bavnbek, B.: Spectral invariants of operators of Dirac type on partitioned manifolds. In: Gil, J., Kreiner, Th., Witt, I. (eds.) Aspects of Boundary Problems in Analysis and Geometry, Operator Theory: Advances and Applications, vol. 151, pp. 1–130. Birkhäuser, Basel (2004). math.AP/0304214

  4. Boggess A.: CR Manifolds and the Tangential Cauchy-Riemann Complex. CRC Press, Boca Raton (1991)

    MATH  Google Scholar 

  5. Booß-Bavnbek B., Furutani K.: The Maslov index: a functional analytical definition and the spectral flow formula. Tokyo J. Math. 21, 1–34 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Booß-Bavnbek B., Lesch M., Phillips J.: Unbounded Fredholm operators and spectral flow. Can. J. Math. 57(2), 225–250 (2005) math.FA/0108014

    MATH  Google Scholar 

  7. Booß-Bavnbek, B., Lesch, M., and Zhu, C.: The Calderón projection: new definition and applications, 58 pp. arXiv:0803.4160 [math.DG]

  8. Booß-Bavnbek B., Marcolli M., Wang B.L.: Weak UCP and perturbed monopole equations. Int. J. Math. 13(9), 987–1008 (2002) math.DG/0203171

    Article  MATH  Google Scholar 

  9. Booß-Bavnbek B., Morchio G., Strocchi F., Wojciechowski K.P.: Grassmannian and chiral anomaly. J. Geom. Phys. 22, 219–244 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Booß-Bavnbek B., Wojciechowski K.P.: Elliptic Boundary Problems for Dirac Operators. Birkhäuser, Basel (1993)

    MATH  Google Scholar 

  11. Booß-Bavnbek, B., Zhu, C.: Weak symplectic functional analysis and general spectral flow formula, 57 pp. math.DG/0406139

  12. Booß-Bavnbek B., Zhu C.: General spectral flow formula for fixed maximal domain. Centr. Eur. J. Math. 3(3), 1–20 (2005) math.DG/0504125v2

    Article  Google Scholar 

  13. Burak T.: On spectral projections of elliptic operators. Ann. Scuola Norm. Sup. Pisa 24(3), 209–230 (1970)

    MATH  MathSciNet  Google Scholar 

  14. Calderón, A.P.: On an inverse boundary value problem. In: Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), pp. 65–73 (1980)

  15. Epstein C.: Cobordism, relative indices and Stein fillings. J. Geom. Anal. 18(2), 341–368 (2008) arXiv:0705.1702 [math.AP]

    Article  MATH  MathSciNet  Google Scholar 

  16. Grubb, G.: Functional Calculus of Pseudodifferential Boundary Problems, 2nd edn. Progress in Mathematics, vol. 65. Birkhäuser, Boston (1996)

  17. Himpel B., Kirk P., Lesch M.: Calderón projector for the Hessian of the Chern-Simons function on a 3-manifold with boundary. Proc. Lond. Math. Soc. 89(3), 241–272 (2004) math.GT/0302234

    Article  MATH  MathSciNet  Google Scholar 

  18. Hörmander L.: The analysis of linear partial differential operators III. Grundlehren der Mathematischen Wissenschaften, vol. 274. Springer, Berlin (1985)

    Google Scholar 

  19. Kenig C.E., Sjöstrand J., Uhlmann G.: The Calderón problem with partial data. Ann. Math. 165, 567–591 (2007) math.AP/0405486v3

    Article  MATH  Google Scholar 

  20. Nicolaescu L.: Generalized symplectic geometries and the index of families of elliptic problems. Mem. Am. Math. Soc. 128/609, 1–80 (1997)

    MathSciNet  Google Scholar 

  21. Nielsen H.B., Ninomiya M.: Law behind second law of thermodynamics—unification with cosmology. JHEP 03, 057–072 (2006) hep-th/0602020

    Article  ADS  MathSciNet  Google Scholar 

  22. Ninomiya M., Tan C.I.: Axial anomaly and index theorem for manifolds with boundary. Nucl. Phys. 257, 199–225 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  23. Nirenberg, L.: Lectures on linear partial differential equations. In: Conference Board of the Mathematical Sciences (CBMS), Regional Conference Series in Mathematics no. 17. Am. Math. Soc., Providence (1973)

  24. Pliś A.: A smooth linear elliptic differential equation without any solution in a sphere. Comm. Pure Appl. Math. 14, 599–617 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ponge R.: Spectral asymmetry, zeta functions, and the noncommutative residue. Int. J. Math. 17, 1065–1090 (2006) math.DG/0310102

    Article  MATH  MathSciNet  Google Scholar 

  26. Ponge R.: Noncommutative residue invariants for CR and contact manifolds, J. Reine Angew. Math. 614, 117–151 (2008) math.DG/0510061

    MATH  MathSciNet  Google Scholar 

  27. Schwartz, L.: Ecuaciones diferenciales parciales elipticas, 2nd edn. Revista colombiana de matematicas. Monografias Matematicas, vol. 13, Bogota (1973)

  28. Scott S.G., Wojciechowski K.P.: The ζ-determinant and Quillen determinant for a Dirac operator on a manifold with boundary. GAFA Geom. Funct. Anal. 10, 1202–1236 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Seeley R.T.: Singular integrals and boundary value problems. Am. J. Math. 88, 781–809 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  30. Seeley R.T.: Complex powers of an elliptic operator. Proc. Symp. Pure Math. 10, 288–307 (1967)

    MathSciNet  Google Scholar 

  31. Seeley, R.T.: Topics in pseudo-differential operators. In: C.I.M.E., Conference on Pseudo-differential Operators 1968, pp. 169–305. Edizioni Cremonese, Roma (1969)

  32. Seeley R.T.: A simple example of spectral pathology for differential operators. Comm. Part. Diff. Equ. 11, 595–598 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  33. Shubin M.A.: Pseudodifferential Operators and Spectral Theory. Springer, Berlin (1980)

    Google Scholar 

  34. Wojciechowski K.P.: Spectral flow and the general linear conjugation problem. Simon Stevin 59, 59–91 (1985)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhelm Booss-Bavnbek.

Additional information

This short review and work program is dedicated to the memory of Krzysztof P. Wojciechowski (1953–2008), who was a leader of the investigation of spectral invariants of Dirac type operators for almost 30 years.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Booss-Bavnbek, B., Lesch, M. The Invertible Double of Elliptic Operators. Lett Math Phys 87, 19–46 (2009). https://doi.org/10.1007/s11005-009-0292-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-009-0292-9

Mathematics Subject Classification (2000)

Keywords

Navigation