Skip to main content

Strong Time Operators Associated with Generalized Hamiltonians

Abstract

Let the pair of operators, (H, T), satisfy the weak Weyl relation:

$$T{\rm e}^{-itH}={\rm e}^{-itH}(T+t),$$

where H is self-adjoint and T is closed symmetric. Suppose that g is a real-valued Lebesgue measurable function on \({\mathbb {R}}\) such that \({g\in C^2(\mathbb {R}\backslash K)}\) for some closed subset \({K\subset\mathbb {R}}\) with Lebesgue measure zero. Then we can construct a closed symmetric operator D such that (g(H), D) also obeys the weak Weyl relation.

This is a preview of subscription content, access via your institution.

References

  1. Arai A.: Generalized weak Weyl relation and decay of quantum dynamics. Rev. Math. Phys. 17, 1071–1109 (2005)

    MATH  Article  MathSciNet  Google Scholar 

  2. Arai, A.: On the uniqueness of weak Weyl representations of the canonical commutation relation. Lett. Math. Phys. (2008, in press)

  3. Arai, A.: Necessary and sufficient conditions for a Hamiltonian with discrete eigenvalues to have time operators, mp-arc 08-154 (2008, preprint)

  4. Arai A., Matsuzawa Y.: Construction of a Weyl representation from a weak Weyl representation of the canonical commutation relation. Lett. Math. Phys. 83, 201–211 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Arai, A., Matsuzawa, Y.: Time operators of a Hamiltonian with purely discrete spectrum. Rev. Math. Phys. (2008, in press)

  6. Galapon E.A.: Self-adjoint time operator is the rule for discrete semi-bounded Hamiltonians. Proc. R. Soc. Lond. A 458, 2671–2689 (2002)

    MATH  ADS  MathSciNet  Article  Google Scholar 

  7. Galapon E.A., Caballar R.F., Bahague R.T. Jr: Confined quantum time of arrivals. Phys. Rev. Lett. 93, 180406 (2004)

    Article  ADS  Google Scholar 

  8. Dorfmeister G., Dorfmeister J.: Classification of certain pairs of operators (P, Q) satisfying [P, Q] =  − iId. J. Funct. Anal. 57, 301–328 (1984)

    MATH  Article  MathSciNet  Google Scholar 

  9. Fujiwara I.: Rational construction and physical signification of the quantum time operator. Prog. Theor. Phys. 64, 18–27 (1980)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  10. Fujiwara I., Wakita K., Yoro H.: Explicit construction of time-energy uncertainty relationship in quantum mechanics. Prog. Theor. Phys. 64, 363–379 (1980)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  11. Goto T., Yamaguchi K., Sudo N.: On the time opertor in quantum mechanics. Prog. Theor. Phys. 66, 1525–1538 (1981)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  12. Goto T., Yamaguchi K., Sudo N.: On the time opertor in quantum mechanics. II. Prog. Theor. Phys. 66, 1915–1925 (1981)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  13. Kobe D.H., Aguilera-Navarro V.C.: Derivation of the energy-time uncertainty relation. Phys. Rev. A 50, 933–938 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  14. Lewis H.R., Laurence W.E., Harris J.D.: Quantum action-angle variables for the harmonic oscillator. Phys. Rev. Lett. 26, 5157–5159 (1996)

    Article  ADS  Google Scholar 

  15. Miyamoto M.: A generalised Weyl relation approach to the time operator and its connection to the survival probability. J. Math. Phys. 42, 1038–1052 (2001)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  16. Rosenbaum D.M.: Super Hilbert space and the quamntum-mechanical time operators. J. Math. Phys. 19, 1127–1144 (1969)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotaro Kuribayashi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hiroshima, F., Kuribayashi, S. & Matsuzawa, Y. Strong Time Operators Associated with Generalized Hamiltonians. Lett Math Phys 87, 115 (2009). https://doi.org/10.1007/s11005-008-0287-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-008-0287-y

Mathematics Subject Classification (2000)

  • 81Q10
  • 47N50

Keywords

  • canonical commutation relation
  • Weyl relation
  • weak Weyl relation
  • Hamiltonian
  • time operator
  • strong time operator