Skip to main content
Log in

Rigidity of Compact Riemannian Spin Manifolds with Boundary

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this article, we prove new rigidity results for compact Riemannian spin manifolds with boundary whose scalar curvature is bounded from below by a nonpositive constant. In particular, we obtain generalizations of a result of Hang–Wang (Pac J Math 232(2):283–288, 2007) based on a conjecture of Schroeder and Strake (Comment Math Helv 64:173–186, 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson L., Dahl M.: Scalar curvature rigidity for asymptotically locally hyperbolic manifolds. Ann. Glob. Anal. Geom. 16, 1–27 (1998)

    Article  Google Scholar 

  2. Anderson M.T., Herzlich M.: Unique continuation results for Ricci curvature and applications. J. Geom. Phys. 58, 179–207 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Bär C.: Extrinsic bounds for eigenvalues of the Dirac operator. Ann. Glob. Anal. Geom. 16, 573–596 (1998)

    Article  MATH  Google Scholar 

  4. Bär C., Gauduchon P., Moroianu A.: Generalized cylinders in semi-Riemannian and spin geometry. Math. Zeit. 249, 545–580 (2005)

    Article  MATH  Google Scholar 

  5. Baum H.: Odd-dimensional Riemannian manifolds admitting imaginary Killing spinors. Ann. Glob. Anal. Geom. 7, 141–153 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Baum H.: Complete Riemannian manifolds with imaginary Killing spinors. Ann. Glob. Anal. Geom. 7, 205–226 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Booss-Bavnek B., Wojciechowski K.P.: Elliptic Boundary Problems for the Dirac Operator. Birkhäuser, Basel (1993)

    Google Scholar 

  8. Herzlich M.: Scalar curvature and rigidity of odd-dimensional complex hyperbolic spaces. Math. Ann. 312, 641–657 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hijazi O., Montiel S.: Extrinsic Killing spinors. Math. Zeit. 244, 337–347 (2003)

    MATH  MathSciNet  Google Scholar 

  10. Hijazi O., Montiel S., Roldán S.: Eigenvalue boundary problems for the Dirac operator. Commun. Math. Phys. 231, 375–390 (2002)

    Article  MATH  ADS  Google Scholar 

  11. Hijazi O., Montiel S., Roldán S.: Dirac operator on hypersurfaces in negatively curved manifolds. Ann. Glob. Anal. Geom. 23, 247–264 (2003)

    Article  MATH  Google Scholar 

  12. Hijazi O., Montiel S., Zhang X.: Dirac operator on embedded hypersurfaces. Math. Res. Lett. 8, 195–208 (2001)

    MATH  MathSciNet  Google Scholar 

  13. Hijazi O., Montiel S., Zhang X.: Conformal lower bounds for the Dirac operator of embedded hypersurfaces. Asian J. Math. 6, 23–36 (2002)

    MATH  MathSciNet  Google Scholar 

  14. Hang F., Wang X.: Vanishing sectional curvature on the boundary and a conjecture of Schroeder and Strake. Pac. J. Math. 232(2), 283–288 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kobayashi S., Nomizu K.: Foundations of Differential Geometry, vol. II. Interscience, New York (1969)

    MATH  Google Scholar 

  16. Lichnerowicz, A.: Spineurs harmoniques. C. R. Acad. Sci. Paris 257(A–B), 7–9 (1963)

  17. Miao P.: Positive mass theorem on manifolds admitting corners along a hypersurface. Adv. Theor. Math. Phys. 6, 1163–1182 (2003)

    Google Scholar 

  18. Min-Oo M.: Scalar curvature rigidity of asymptotically hyperbolic spin manifolds. Math. Ann. 285, 527–539 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Morel, B.: Tenseur d’impulsion-énergie et géométrie spinorielle extrinsèque. Thèse, Université Henri Poincaré, Nancy I (2002)

  20. Raulot, S.: Aspect conforme de l’opérateur de Dirac sur une variété à bord. Thèse, Université Henri Poincaré, Nancy I (2006)

  21. Reilly R.C.: Application of the Hessian operator in a Riemannian manifold. Ind. Univ. Math. J. 26, 459–472 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ros A.: Compact hypersurfaces with constant scalar curvature and a congruence theorem. J. Differ. Geom. 27, 215–220 (1988)

    MATH  MathSciNet  Google Scholar 

  23. Shi Y., Tam L.-F.: Positive mass theorem and the boundary behaviour of compact manifolds with nonnegative scalar curvature. J. Differ. Geom. 62(1), 79–125 (2002)

    MATH  MathSciNet  Google Scholar 

  24. Schroeder V., Strake M.: Rigidity of convex domains in manifolds with nonnegative Ricci and sectional curvature. Comment. Math. Helv. 64, 173–186 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wang M.: Parallel spinors and parallel forms. Ann. Glob. Anal. Geom. 7, 59–68 (1989)

    Article  MATH  Google Scholar 

  26. Witten E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Raulot.

Additional information

S. Raulot was supported by the Swiss SNF grant 20-118014/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raulot, S. Rigidity of Compact Riemannian Spin Manifolds with Boundary. Lett Math Phys 86, 177–192 (2008). https://doi.org/10.1007/s11005-008-0277-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-008-0277-0

Mathematics Subject Classification (2000)

Keywords

Navigation