Skip to main content

Advertisement

Log in

Inequalities for Quantum Skew Information

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study quantum information inequalities and show that the basic inequality between the quantum variance and the metric adjusted skew information generates all the multi-operator matrix inequalities or Robertson type determinant inequalities studied by a number of authors. We introduce an order relation on the set of functions representing quantum Fisher information that renders the set into a lattice with an involution. This order structure generates new inequalities for the metric adjusted skew informations. In particular, the Wigner–Yanase skew information is the maximal skew information with respect to this order structure in the set of Wigner–Yanase–Dyson skew informations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andai A.: Uncertainty principle with quantum Fisher information. J. Math. Phys. 49, 012106 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  2. Gibilisco P., Imparato D., Isola T.: Uncertainty principle and quantum Fisher information. J. Math. Phys. 48, 072109 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. Gibilisco P., Imparato D., Isola T.: A Robertson-type uncertainty principle and quantum Fisher information. Linear Algebra Appl. 428, 1706–1724 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gibilisco, P., Imparato, D., Isola, T.: Inequalities for quantum Fisher information. Proc. Am. Math. Soc., S 0002-9939 (08) 09447–1

  5. Gibilisco, P., Hiai, F., Petz, D.: Quantum covariance, quantum Fisher information and the uncertainty principle. arXiv: math-ph/ 0712.1208 (2007)

  6. Hansen F.: Characterizations of symmetric monotone metrics on the state space of quantum systems. Quantum Inf. Comput. 6, 597–605 (2006)

    MATH  MathSciNet  Google Scholar 

  7. Hansen F.: The Wigner–Yanase entropy is not subadditive. J. Stat. Phys. 126, 643–648 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Hansen F., Pedersen G.K.: Jensen’s inequality for operators and Löwner’s theorem. Math. Ann. 258, 229–241 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hansen F.: Metric adjusted skew information. Proc. Natl. Acad. Sci. USA 105, 9909–9916 (2008)

    Article  ADS  Google Scholar 

  10. Kosaki H.: Matrix trace inequalities related to uncertainty principle. Int. J. Math. 16(6), 629–645 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Luo S.L., Zhang Q.: On skew information. IEEE Trans. Inf. Theory 50(8), 1778–1782 (2004)

    Article  MathSciNet  Google Scholar 

  12. Luo S.L., Zhang Q.: Correction to ‘On skew information’. IEEE Trans. Inf. Theory 51(12), 4432 (2005)

    Article  MathSciNet  Google Scholar 

  13. Luo S.L.: Wigner–Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)

    Article  ADS  Google Scholar 

  14. Petz, D., Sándor Szabó, V.E.: From quasi-entropy to skew information. arXiv: math/ 0712.2881 (2007)

  15. Petz D.: Monotone metrics on matrix spaces. Linear Algebra Appl. 244, 81–96 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Petz D., Hasegawa H.: On the Riemannian metric of α-entropies of density matrices. Lett. Math. Phys. 38, 221–225 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Robertson H.P.: An indeterminacy relation for several observables and its classical interpretation. Phys. Rev. 46, 794–801 (1934)

    Article  MATH  ADS  Google Scholar 

  18. Wigner E.P., Yanase M.M.: Information contents of distributions. Proc. Natl. Acad. Sci. USA 49, 910–918 (1963)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Hansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Audenaert, K., Cai, L. & Hansen, F. Inequalities for Quantum Skew Information. Lett Math Phys 85, 135–146 (2008). https://doi.org/10.1007/s11005-008-0269-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-008-0269-0

Mathematics Subject Classification (2000)

Keywords

Navigation