Abstract
We study quantum information inequalities and show that the basic inequality between the quantum variance and the metric adjusted skew information generates all the multi-operator matrix inequalities or Robertson type determinant inequalities studied by a number of authors. We introduce an order relation on the set of functions representing quantum Fisher information that renders the set into a lattice with an involution. This order structure generates new inequalities for the metric adjusted skew informations. In particular, the Wigner–Yanase skew information is the maximal skew information with respect to this order structure in the set of Wigner–Yanase–Dyson skew informations.
Similar content being viewed by others
References
Andai A.: Uncertainty principle with quantum Fisher information. J. Math. Phys. 49, 012106 (2008)
Gibilisco P., Imparato D., Isola T.: Uncertainty principle and quantum Fisher information. J. Math. Phys. 48, 072109 (2007)
Gibilisco P., Imparato D., Isola T.: A Robertson-type uncertainty principle and quantum Fisher information. Linear Algebra Appl. 428, 1706–1724 (2008)
Gibilisco, P., Imparato, D., Isola, T.: Inequalities for quantum Fisher information. Proc. Am. Math. Soc., S 0002-9939 (08) 09447–1
Gibilisco, P., Hiai, F., Petz, D.: Quantum covariance, quantum Fisher information and the uncertainty principle. arXiv: math-ph/ 0712.1208 (2007)
Hansen F.: Characterizations of symmetric monotone metrics on the state space of quantum systems. Quantum Inf. Comput. 6, 597–605 (2006)
Hansen F.: The Wigner–Yanase entropy is not subadditive. J. Stat. Phys. 126, 643–648 (2007)
Hansen F., Pedersen G.K.: Jensen’s inequality for operators and Löwner’s theorem. Math. Ann. 258, 229–241 (1982)
Hansen F.: Metric adjusted skew information. Proc. Natl. Acad. Sci. USA 105, 9909–9916 (2008)
Kosaki H.: Matrix trace inequalities related to uncertainty principle. Int. J. Math. 16(6), 629–645 (2005)
Luo S.L., Zhang Q.: On skew information. IEEE Trans. Inf. Theory 50(8), 1778–1782 (2004)
Luo S.L., Zhang Q.: Correction to ‘On skew information’. IEEE Trans. Inf. Theory 51(12), 4432 (2005)
Luo S.L.: Wigner–Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)
Petz, D., Sándor Szabó, V.E.: From quasi-entropy to skew information. arXiv: math/ 0712.2881 (2007)
Petz D.: Monotone metrics on matrix spaces. Linear Algebra Appl. 244, 81–96 (1996)
Petz D., Hasegawa H.: On the Riemannian metric of α-entropies of density matrices. Lett. Math. Phys. 38, 221–225 (1996)
Robertson H.P.: An indeterminacy relation for several observables and its classical interpretation. Phys. Rev. 46, 794–801 (1934)
Wigner E.P., Yanase M.M.: Information contents of distributions. Proc. Natl. Acad. Sci. USA 49, 910–918 (1963)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Audenaert, K., Cai, L. & Hansen, F. Inequalities for Quantum Skew Information. Lett Math Phys 85, 135–146 (2008). https://doi.org/10.1007/s11005-008-0269-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11005-008-0269-0