Skip to main content
Log in

Goldfish Geodesics and Hamiltonian Reduction of Matrix Dynamics

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe the Hamiltonian reduction of a time-dependent real-symmetric N×N matrix system to free vector dynamics, and also provide a geodesic interpretation of Ruijsenaars–Schneider systems. The simplest of the latter, the goldfish equation, is found to represent a flat-space geodesic in curvilinear coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnlind, J., Hoppe, J.: Eigenvalue-dynamics off the Calogero–Moser system. Lett. Math. Phys. 68, 121–129 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnlind, J., Hoppe, J.: Eigenvalue dynamics, follytons and large N limits of matrices. Applications of random matrices in physics, NATO Sci. Ser. II Math. Phys. Chem., vol. 221, Springer, Dordrecht (2006)

  3. Babelon, O., Bernard, D., Talon, M.: Introduction to Classical Integrable Systems. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  4. Braden, H., Sasaki, R.: The Ruijsenaars–Schneider model. Progr. Theor. Phys. 97, 1003–1017 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  5. Calogero, F.: Solution of a three-Body problem in one dimension. J. Math. Phys. 10, 2191–2196 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  6. Calogero, F.: Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12, 419–436 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  7. Calogero, F.: Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations and related “solvable” many-body problems. Nuovo Cim. B 43, 177–241 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  8. Calogero, F., Francoise, J.P.: Hamiltonian character of the motion of the zeros of a polynomial whose coefficients oscillate over time. J. Phys. A 30, 211–218 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Calogero, F.: Classical many-body problems amenable to exact treatments. Lecture Notes in Physics. Springer, Berlin (2001)

    Google Scholar 

  10. Calogero, F.: The neatest many-body problem amenable to exact treatments (a “goldfish”?). Advances in nonlinear mathematics and science. Physica D 152(153), 78–84 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  11. Calogero, F.: A technique to identify solvable dynamical systems, and a solvable generalization of the goldfish many-body problem. J. Math. Phys. 45, 2266–2279 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Gibbons, J., Hermsen, T.: A generalisation of the Calogero–Moser system. Physica D 11, 337–348 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Moser, J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math. 16, 197–220 (1975)

    Article  MATH  Google Scholar 

  14. Nakamura, K., Lakshmanan, M.: Complete integrability in a quantum description of chaotic systems. Phys. Rev. Lett. 57, 1661–1664 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  15. Olshanetsky, M.A., Perelomov, A.: Classical integrable finite-dimensional systems related to Lie algebras. Phys. Rep. 71, 313–400 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  16. Olshanetsky, M.A., Perelomov, A.: Explicit solution of the Calogero model in the classical case and geodesic flows on symmetric spaces of zero curvature. Lett. Nuovo Cim. 16, 333–339 (1976)

    Article  MathSciNet  Google Scholar 

  17. Pechukas, P.: Distribution of energy eigenvalues in the irregular spectrum. Phys. Rev. Lett. 51, 943–946 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ruijsenaars, S., Schneider, H.: A new class of integrable systems and its relation to solitons. Ann. Phys. 170, 370–405 (1986)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Suris, Y.B.: The Problem of Integrable Discretization: Hamiltonian Approach. Birkhäuser Verlag, Basel (2003)

    MATH  Google Scholar 

  20. Sutherland, B.: Exact results for a quantum many-body problem in one dimension. II. Phys. Rev. A 5, 1372–1376 (1972)

    Article  Google Scholar 

  21. Wojciechowski, S.: An integrable marriage of the Euler equations with the Calogero–Moser system. Phys. Lett. A 111, 101–103 (1985)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Hoppe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnlind, J., Bordemann, M., Hoppe, J. et al. Goldfish Geodesics and Hamiltonian Reduction of Matrix Dynamics. Lett Math Phys 84, 89–98 (2008). https://doi.org/10.1007/s11005-008-0232-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-008-0232-0

Mathematics Subject Classification (2000)

Keywords

Navigation