Skip to main content
Log in

Intermittency Expansions for Limit Lognormal Multifractals

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The general intermittency expansion is developed for the probability distribution of the limit lognormal multifractal process introduced by Mandelbrot (in Rosenblatt M, Van Atta C (eds.) Statistical Models and Turbulence. Lecture Notes in Physics, vol. 12, p. 333. Springer, New York, 1972) and constructed explicitly by Bacry et al. (Phys Rev E 64:026103, 2001). The structure of expansion coefficients is shown to be determined solely by that of the Selberg integral. The coefficients are computed in terms of the values of the Riemann zeta function at positive integers. For application, an explicit formula for the negative integral moments of the process is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  2. Bacry, E., Delour, J., Muzy, J.-F.: Multifractal random walk. Phys. Rev. E 64, 026103 (2001)

    Article  ADS  Google Scholar 

  3. Bacry, E., Delour, J., Muzy, J.-F.: Modelling financial time series using multifractal random walks. Physica A 299, 84–92 (2001)

    Article  MATH  ADS  Google Scholar 

  4. Bacry, E., Muzy, J.-F.: Log-infinitely divisible multifractal random walks. Commun. Math. Phys 236, 449–475 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Barral, J., Mandelbrot, B.B.: Multifractal products of cylindrical pulses. Prob. Theory Relat. Fields 124, 409–430 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Calvet, L., Fisher, A.: Multifractality in asset returns: theory and evidence. Rev. Econ. Stat. LXXXIV, 381–406 (2002)

    Google Scholar 

  7. Goldberger, A., Amaral, L., Hausdorff, J., Ivanov, P., Peng, C., Stanley, H.: Fractal dynamics in physiology: alterations with disease and aging. Proce. Nat. Acad. Sci. USA 99, 2466–2472 (2002)

    Article  ADS  Google Scholar 

  8. Ivanov, P., Amaral, L., Goldberger, A., Havlin, S., Rosenblum, M., Struzik, Z., Stanley, H.: Multifractality in human heartbeat dynamics. Nature 399, 461–465 (1999)

    Article  ADS  Google Scholar 

  9. Kahane, J.-P.: Sur le chaos multiplicatif. Ann. Sci. Math. Que. 9, 105–150 (1985)

    MATH  MathSciNet  Google Scholar 

  10. Kahane, J.-P.: Positive martingales and random measures. Chi. Ann. Math. 8B, 1–12 (1987)

    MathSciNet  Google Scholar 

  11. Kahane, J.-P.: Produits de poids aléatoires indépendants et applications. In: Belair, J., Dubuc, S. (eds) Fractal Geometry and Analysis, p. 277. Kluwer, Boston (1991)

    Google Scholar 

  12. Mandelbrot, B.B.: Possible refinement of the log-normal hypothesis concerning the distribution of energy dissipation in intermittent turbulence. In: Rosenblatt, M., Van Atta, C. (eds) Statistical Models and Turbulence. Lecture Notes in Physics vol 12, p. 333. Springer, New York (1972)

    Google Scholar 

  13. Mandelbrot, B.B.: Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J. Fluid Mech. 62, 331–358 (1974)

    Article  MATH  ADS  Google Scholar 

  14. Mandelbrot, B.B. et al.: Limit lognormal multifractal measures. In: Gotsman, E.A.(eds) Frontiers of Physics: Landau Memorial Conference, p. 309. Pergamon, New York (1990)

    Google Scholar 

  15. Meneveau, C., Sreenivasan, K.R.: The multifractal nature of the turbulent energy dissipation. J. Fluid Mech. 224, 429–484 (1991)

    Article  MATH  ADS  Google Scholar 

  16. Muzy, J.-F., Bacry, E.: Multifractal stationary random measures and multifractal random walks with log-infinitely divisible scaling laws. Phys. Rev. E 66, 056121 (2002)

    Article  ADS  Google Scholar 

  17. Ostrovsky, D.: Limit lognormal multifractal as an exponential functional. J. Stat. Phys. 116, 1491–1520 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Ostrovsky, D.: Functional Feynman-Kac equations for limit lognormal multifractals. J. Stat. Phys. 127, 935–965 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Riordan, J.: Combinatorial Identities. Wiley, New York (1968)

    MATH  Google Scholar 

  20. Schertzer, D., Lovejoy, S.: Physically based rain and cloud modeling by anisotropic, multiplicative turbulent cascades. J. Geophys. Res. 92, 9693–9721 (1987)

    Article  ADS  Google Scholar 

  21. Schertzer, D., Lovejoy, S., Schmitt, F., Chigirinskaya, Y., Marsan, D.: Multifractal cascade dynamics and turbulent intermittency. Fractals 5, 427–471 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Schmitt, F.: A causal multifractal stochastic equation and its statistical properties. Eur. J. Phys. B 34, 85–98 (2003)

    Article  ADS  Google Scholar 

  23. Schmitt, F., Schertzer, D., Lovejoy, S.: Multifractal analysis of foreign exchange data. Appl. Stoch. Models Data Anal. 15, 29–53 (1999)

    Article  MATH  Google Scholar 

  24. Selberg, A.: Remarks on a multiple integral. Norske Mat. Tidsskr. 26, 71–78 (1944)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Ostrovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrovsky, D. Intermittency Expansions for Limit Lognormal Multifractals. Lett Math Phys 83, 265–280 (2008). https://doi.org/10.1007/s11005-008-0225-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-008-0225-z

Mathematics Subject Classification (2000)

Keywords

Navigation