Skip to main content
Log in

Quadratic Deformations of Lie–Poisson Structures

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this letter, first we give a decomposition for any Lie–Poisson structure \(\pi_{\mathfrak g}\) associated to the modular vector. In particular, \(\pi_{\mathfrak g}\) splits into two compatible Lie–Poisson structures if \({\rm dim}{\mathfrak g} \le 3\). As an application, we classified quadratic deformations of Lie– Poisson structures on \(\mathbb R^3\) up to linear diffeomorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cahen M. and Schwachhöfer L. (2004). Special symplectic connections and Poisson geometry. Lett. Math. Phys. 69: 115–137

    Article  MATH  MathSciNet  Google Scholar 

  2. Carinena J., Ibort A., Marmo G. and Perelomov A. (1994). On the geometry of Lie algebras and Poisson tensors. J. Phys. A Math. 27: 7425–7449

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Chi Q.-S., Merkulov S. and Schwachhöfer L.J. (1996). On the existence of infinite series of exotic holonomies. Invent. Math. 126: 391–411

    Article  MATH  MathSciNet  Google Scholar 

  4. Crainic M. and Fernands R.L. (2004). Integrability of Poisson brackets. J. Diff. Geom. 66: 71–137

    MATH  Google Scholar 

  5. Donin J. and Makar L. (1998). Quantization of quadratic Poisson brackets on a polynomial algebra of three variables. J. Pure Appl. Algebra 129: 247–261

    Article  MATH  MathSciNet  Google Scholar 

  6. Dufour J.-P. and Haraki A. (1991). Rotationnels et structures de Poisson quadratiques. C. R. Acad. Sci. Paris, t. 312(Série I): 137–140

    MATH  MathSciNet  Google Scholar 

  7. Dufour J.-P. and Zung N.-T. (2005). Poisson Structures and Their Normal Forms, PM242. Birkhauser, Boston

    Google Scholar 

  8. Grabowski J., Marmo G. and Perelomov A. (1993). Poisson structures: towards a classification. Mod. Phys. Lett A 8: 1719–1733

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Koszul, J.-L.: Crochets de Schouten-Nijenhuis et cohomologei. Astérisque Soc. Math. de France,hors série 257–271 (1985)

  10. Jacobson N. (1962). Lie Algbras. Dover Publications, Inc., New York

    Google Scholar 

  11. Liu Z.-J. and Xu P. (1992). On quadratic Poisson structures. Lett. Math. Phys. 26: 33–42

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Manchon D., Msmoudi M. and Roux A. (2002). On quantization of quadratic Poisson structures. Commun. Math. Phys. 225: 121–130

    Article  MATH  ADS  Google Scholar 

  13. Sheng Y.-H. (2007). Linear Poisson Strutures on \(\mathbb R^4\). J. Geom. Phys. 57: 2398–2410

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Weinstein A. (1997). The modular automorphism group of a Poisson manifold. J. Geom. Phys. 26: 379–394

    Article  ADS  MathSciNet  Google Scholar 

  15. Weinstein A. (1998). Poisson geometry. Diff. Geom. Appl. 9: 213–238

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangju Liu.

Additional information

Research partially supported by NSF of China and the Research Project of “Nonlinear Science”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Q., Liu, Z. & Sheng, Y. Quadratic Deformations of Lie–Poisson Structures. Lett Math Phys 83, 217–229 (2008). https://doi.org/10.1007/s11005-008-0221-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-008-0221-3

Mathematics Subject Classification (2000)

Keywords

Navigation