Skip to main content
Log in

Effective Masses for Zigzag Nanotubes in Magnetic Fields

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the Schrödinger operator with a periodic potential on quasi-1D models of zigzag single-wall carbon nanotubes in magnetic field. The spectrum of this operator consists of an absolutely continuous part (intervals separated by gaps) plus an infinite number of eigenvalues with infinite multiplicity. We obtain identities and a priori estimates in terms of effective masses and gap lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris P. (1999). Carbon Nanotubes and Related Structures. Cambridge University Press, Cambridge

    Google Scholar 

  2. Kargaev P. and Korotyaev E. (1995). Effective masses and conformal mappings. Commun. Math. Phys. 169: 597–625

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Kargaev P. and Korotyaev E. (1997). The inverse problem for the Hill operator, a direct approach. Invent. Math. 129: 567–593

    Article  MATH  MathSciNet  Google Scholar 

  4. Korotyaev E. (1997). The estimates of periodic potential in terms of effective masses. Commun. Math. Phys. 183: 383–400

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Korotyaev E. (1998). Estimates of periodic potentials in terms of gap lengths. Commun. Math. Phys. 197(3): 521–526

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Korotyaev E. and Lobanov I. (2007). Schrödinger operators on zigzag nanotubes. Ann. H. Poincaré 8: 1151–1176

    Article  MATH  MathSciNet  Google Scholar 

  7. Korotyaev, E., Lobanov, I.: Magnetic Schrödinger operators on zigzag nanotubes. (preprint, 2006.) http://arxiv.org/abs/math/0604007

  8. Marchenko V. and Ostrovski I.A. (1975). characterization of the spectrum of the Hill operator. Math. USSR Sb. 26: 493–554

    Article  Google Scholar 

  9. Pauling L. (1936). The diamagnetic anisotropy of aromatic molecules. J. Chem. Phys. 4: 673–677

    Article  ADS  Google Scholar 

  10. Ruedenberg K. and Scherr C. (1953). Free-electron network model for conjugated systems I. Theory. J Chem. Phys. 21: 1565–1581

    ADS  Google Scholar 

  11. Saito R., Dresselhaus G. and Dresselhaus M. (1998). Physical properties of carbon nanotubes. Imperial College Press, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Korotyaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korotyaev, E. Effective Masses for Zigzag Nanotubes in Magnetic Fields. Lett Math Phys 83, 83–95 (2008). https://doi.org/10.1007/s11005-007-0212-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-007-0212-9

Mathematics Subject Classification (2000)

Keywords

Navigation