Letters in Mathematical Physics

, Volume 83, Issue 1, pp 13–18 | Cite as

Yamabe Solitons, Determinant of the Laplacian and the Uniformization Theorem for Riemann Surfaces

  • Luca Fabrizio Di Cerbo
  • Marcelo Mendes Disconzi


In this letter, we prove that non-trivial compact Yamabe solitons or breathers do not exist. In particular our proof in the two dimensional case depends only on properties of the determimant of the Laplacian and turns out to be independent of the classical uniformization theorem (UT). Using this remarkable fact we are able to explain how an independent proof of the UT for Riemann surfaces can be obtained using the Yamabe–Ricci flow.


Yamabe flow Yamabe solitons determinant of Laplacian 

Mathematics Subject Classification (2000)

53C44 58J52 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Besse L.A.: Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathamatics and Related Areas (3)], vol. 10. Springer, Berlin (1987)Google Scholar
  2. 2.
    Chen, X., Peng, L., Tian, G.: A note on uniformization theorem of Riemann surfaces by Ricci flow. Proc. AMS (to appear), arXiv:math.DG/0505163Google Scholar
  3. 3.
    Chow B. (1991). The Ricci flow on he 2-sphere. J. Differe. Geom. 33(2): 325–334 zbMATHGoogle Scholar
  4. 4.
    Chow B. (1991). On the entropy estimate for the Ricci flow on compact 2-orbifolds. J. Differe. Geom. 33(2): 597–600 zbMATHGoogle Scholar
  5. 5.
    Chow B., Lu P. and Ni L. (2006). Hamilton’s Ricci Flow. American Mathematical Society/Science Press, Providence zbMATHGoogle Scholar
  6. 6.
    Gilkey P.B. (1995). Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem. CRC Press, Boca Raton zbMATHGoogle Scholar
  7. 7.
    Hamilton, R.S.: The Ricci flow on surfaces, mathematics and general relativity, Santa Cruz, SA, 1986. Contemp. Math, vol. 71, pp. 237–262. American Mathematical Society, Providence (1988)Google Scholar
  8. 8.
    Perelman, G.A.: The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159Google Scholar
  9. 9.
    Polyakov A. (1981). Quantum geometry of Fermionic strings. Phys. Lett. B 103: 211–213 CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Osgood B., Phillips R. and Sarnak P. (1988). Extremals of determinants of Laplacians. J. Funct. Anal. 80: 148–211 zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Luca Fabrizio Di Cerbo
    • 1
  • Marcelo Mendes Disconzi
    • 1
  1. 1.Department of MathematicsStony Brook UniversityStony BrookUSA

Personalised recommendations