Skip to main content
Log in

On the Dense Point and Absolutely Continuous Spectrum for Hamiltonians with Concentric δ Shells

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider Schrödinger operators in dimension ν ≥ 2 with a singular interaction supported by an infinite family of concentric spheres, analogous to a system studied by Hempel and coauthors for regular potentials. The essential spectrum covers a half line determined by the appropriate one-dimensional comparison operator; it is dense pure point in the gaps of the latter. If the interaction is nontrivial and radially periodic, there are infinitely many absolutely continuous bands; in contrast to the regular case the lengths of the p.p. segments interlacing with the bands tend asymptotically to a positive constant in the high-energy limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hempel R., Hinz A.M. and Kalf H. (1987). On the essential spectrum of Schrödinger operators with spherically symmetric potentials. Math. Ann. 277: 197–208

    Article  MATH  MathSciNet  Google Scholar 

  2. Hempel R., Herbst I., Hinz A.M. and Kalf H. (1991). Intervals of dense point spectrum for spherically symmetric Schödinger operators of the type. J. Lond. Math. Soc. 43: 295–304

    Article  MATH  MathSciNet  Google Scholar 

  3. Brown B.M., Eastham M.S.P., Hinz A.M. and Schmidt K.M. (2004). Distribution of eigenvalues in gaps of the essential spectrum of Sturm–Liouville operators—a numerical approach. J. Comput. Anal. Appl. 6: 85–95

    MATH  MathSciNet  Google Scholar 

  4. Brown B.M., Eastham M.S.P., Hinz A.M., Kriecherbauer T., McCormack D.K.R. and Schmidt K.M. (1998). Welsh eigenvalues of radially periodic Schrödinger operators. J. Math. Anal. Appl. 225: 347–357

    Article  MATH  MathSciNet  Google Scholar 

  5. Schmidt K.M. (1999). Oscillation of the perturbed Hill equation and the lower spectrum of radially periodic Schrödinger operators in the plane. Proc. Am. Math. Soc. 127: 2367–2374

    Article  MATH  Google Scholar 

  6. Miller K. and Simon B. (1980). Quantum magnetic Hamiltonians with remarkable spectral properties. Phys. Rev. Lett. 44: 1706–1707

    Article  ADS  MathSciNet  Google Scholar 

  7. Hoever G. (1990). On the spectrum of two-dimensional Schrödinger operators with spherically symmetric, radially periodic magnetic fields. Commun. Math. Phys. 189: 879–890

    Article  ADS  MathSciNet  Google Scholar 

  8. Schmidt K.M. (2002). Eigenvalues in gaps of perturbed periodic Dirac operators: numerical evidence. J. Comput. Appl. Math. 148: 169–181

    Article  MATH  MathSciNet  Google Scholar 

  9. Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics, 2nd edn. In: With an appendix by P. Exner. AMS Chelsea (2005)

  10. Brasche J.F., Exner P., Kuperin Yu.A. and Šeba P. (1994). Schrödinger operators with singular interactions. J. Math. Anal. Appl. 184: 112–139

    Article  MATH  MathSciNet  Google Scholar 

  11. Kato T. (1984). Perturbation Theory for Linear Operators, 3rd edn. Springer, Berlin

    Google Scholar 

  12. Redheffer R.M. (1963). Über eine beste Ungleichung zwischen den Normen von ff′, f′′. Math. Zeitschr. 80: 390–397

    Article  MATH  MathSciNet  Google Scholar 

  13. Weidmann J. (1987). Note to the paper by Rainer Hempel, Andreas M. Hinz, Hubert Kalf: on the essential spectrum of Schrödinger operators with spherically symmetric potentials. Math. Ann. 277: 209–211

    MATH  MathSciNet  Google Scholar 

  14. Weidmann J. (1987). Spectral Theory of Ordinary Differential Operators. Springer, Berlin

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Exner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Exner, P., Fraas, M. On the Dense Point and Absolutely Continuous Spectrum for Hamiltonians with Concentric δ Shells. Lett Math Phys 82, 25–37 (2007). https://doi.org/10.1007/s11005-007-0191-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-007-0191-x

Mathematics Subject Classification (2000)

Keywords

Navigation