Skip to main content
Log in

Rota–Baxter Algebras and New Combinatorial Identities

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The word problem for an arbitrary associative Rota–Baxter algebra is solved. This leads to a noncommutative generalization of the classical Spitzer identities. Links to other combinatorial aspects are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguiar M. (2000). Prepoisson algebras. Lett. Math. Phys. 54: 263–277

    Article  MATH  Google Scholar 

  2. Atkinson F.V. (1963). Some aspects of Baxter’s functional equation. J. Math. Anal. Appl. 7: 1–30

    Article  MATH  Google Scholar 

  3. Baxter G. (1960). An analytic problem whose solution follows from a simple algebraic identity. Pac. J. Math. 10: 731–742

    Google Scholar 

  4. Bergeron, N., Zabrocki, M.: The Hopf algebras of symmetric functions and quasisymmetric functions in non-commutative variables are free and cofree. arXiv:math.CO/0509265 (2007)

  5. Cariñena, J., Ebrahimi-Fard, K., Figueroa, H., Gracia-Bondía, J.M.: Hopf algebras in dynamical systems theory. Int. J. Geom. Meth. Phys., arXiv:math.CA/0701010 (2007, in press)

  6. Cartier P. (1972). On the structure of free Baxter algebras. Adv. Math. 9: 253–265

    Article  MATH  Google Scholar 

  7. Chapoton F. and Livernet M. (2001). Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Notices 8: 395–408

    Article  Google Scholar 

  8. Connes A. and Kreimer D. (2000). Renormalization in quantum field theory and the Riemann–Hilbert problem I. The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210: 249–273

    Article  MATH  ADS  Google Scholar 

  9. Ebrahimi-Fard K. (2002). Loday-type algebras and the Rota–Baxter relation. Lett. Math. Phys. 61: 139–147

    Article  MATH  Google Scholar 

  10. Ebrahimi-Fard, K., Guo, L.: On free Rota–Baxter algebras. arXiv:math.RA/0510266

  11. Ebrahimi-Fard K., Guo L. and Kreimer D. (2005). Integrable Renormalization II: the General case. Ann. Henri Poincaré 6: 369–395

    Article  MATH  Google Scholar 

  12. Ebrahimi-Fard K. and Kreimer D. (2005). Hopf algebra approach to Feynman diagram calculations. J. Phys. A 38: R385–R406

    Article  MATH  ADS  Google Scholar 

  13. Ebrahimi-Fard K., Gracia-Bondía J.M., Guo L. and Várilly J.C. (2006). Combinatorics of renormalization as matrix calculus. Phys. Lett. B 632: 552–558

    Article  ADS  Google Scholar 

  14. Ebrahimi-Fard K., Guo L. and Manchon D. (2006). Birkhoff type decompositions and the Baker–Campbell–Hausdorff recursion. Commun. Math. Phys. 267: 821–845

    Article  ADS  Google Scholar 

  15. Ebrahimi-Fard K. and Guo L. (2007). Rota–Baxter Algebras in Renormalization of Perturbative Quantum Field Theory. Fields Ins. 50: 47–105

    Google Scholar 

  16. Ebrahimi-Fard, K., Gracia-Bondía, J.M., Patras, F.: A Lie theoretic approach to renormalization. to appear in Commun. Math. Phys. arXiv:hep-th/0609035

  17. Ebrahimi-Fard, K., Manchon, D., Patras, F.: The Bohnenblust–Spitzer identity for noncommutative Rota–Baxter algebras solves Bogoliubov’s counterterm recursion. arXiv:0705.1265v1 [math.CO]

  18. Gelfand I.M., Krob D., Lascoux A., Leclerc B., Retakh V. and Thibon J.-Y. (1995). Noncommutative symmetric functions. Adv. Math. 112: 218–348

    Article  MATH  Google Scholar 

  19. Loday J.-L. (2001). Dialgebras. Lecture Notes in Mathematics 1763. Springer, Berlin, 7–66

    Google Scholar 

  20. Lam C.S. and Liu K.F. (1997). Consistency of the baryon-multimeson amplitudes for large-N c QCD Feynman diagrams. Phys. Rev. Lett. 79: 597–600

    Article  ADS  Google Scholar 

  21. Lam C.S. (1998). Decomposition of time-ordered products and path-ordered exponentials. J. Math. Phys. 39: 5543–5558

    Article  MATH  ADS  Google Scholar 

  22. Novelli, J.-C., Thibon, J.-Y.: Polynomial realizations of some trialgebras. arXiv:math.CO/0605061

  23. Oteo J.A. and Ros J. (2000). From time-ordered products to Magnus expansion. J. Math. Phys. 41: 3268–3277

    Article  MATH  ADS  Google Scholar 

  24. Patras F. (1994). L’algèbre des descentes d’une bigèbre graduée. J. Algebra 170: 547–566

    Article  MATH  Google Scholar 

  25. Patras, F., Schocker, M.: Trees, set compositions and the twisted descent algebra. J. Algebra Comb. arXiv:math.CO/0512227 (to appear)

  26. Patras F. and Reutenauer C. (2002). On Dynkin and Klyachko idempotents in graded bialgebras. Adv. Appl. Math. 28: 560–579

    Article  MATH  Google Scholar 

  27. Reutenauer C. (1993). Free Lie Algebras. Oxford University Press, Oxford

    MATH  Google Scholar 

  28. Rota, G.-C.: (1969) Baxter algebras and combinatorial identities. I,II. Bull. Amer. Math. Soc. 75:325–329 ibidem 75 (1969) 330–334

  29. Rota G.-C. and Smith D.A. (1972). Fluctuation theory and Baxter algebras. Symposia Mathematica IX: 179–201

    Google Scholar 

  30. Sagan B.S. (2001). The Symmetric Group. Springer, New York

    MATH  Google Scholar 

  31. Spitzer F. (1956). A combinatorial lemma and its application to probability theory. Trans. Am. Math. Soc. 82: 323–339

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahimi-Fard Kurusch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurusch, EF., Gracia-Bondía, J.M. & Patras, F. Rota–Baxter Algebras and New Combinatorial Identities. Lett Math Phys 81, 61–75 (2007). https://doi.org/10.1007/s11005-007-0168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-007-0168-9

Mathematics Subject Classification (2000)

Keywords

Navigation