Skip to main content

Lieb–Thirring Inequalities for Schrödinger Operators with Complex-valued Potentials


Inequalities are derived for power sums of the real part and the modulus of the eigenvalues of a Schrödinger operator with a complex-valued potential.

This is a preview of subscription content, access via your institution.


  1. 1.

    Abramov A.A., Aslanyan A., Davies E.B. (2001) Bounds on complex eigenvalues and resonances. J. Phys. A 34, 57–72

    MATH  Article  ADS  MathSciNet  Google Scholar 

  2. 2.

    Davies E.B., Nath J. (2002) Schrödinger operators with slowly decaying potentials. J. Comput. Appl. Math. 148(1): 1–28

    MATH  Article  MathSciNet  Google Scholar 

  3. 3.

    Aizenman M., Lieb E.H. (1978) On semi-classical bounds for eigenvalues of Schrödinger operators. Phys. Lett. 66A, 427–429

    MathSciNet  Google Scholar 

  4. 4.

    Laptev, A., Weidl, T.: Recent results on Lieb–Thirring inequalities, Journées “Équations aux Dérivées Partielles” (La Chapelle sur Erdre, 2000), Exp. No. XX, University of Nantes, Nantes (2000)

  5. 5.

    Lieb E.H., Thirring W.: In: Lieb, E., Simon, B., Wightman, A. (eds.) Inequalities for the Moments of the Eigenvalues of the Schrödinger Hamiltonian and Their Relation to Sobolev Inequalities, in Studies in Mathematical Physics. pp. 269–303 Princeton University Press, Princeton, (1976)

Download references

Author information



Corresponding author

Correspondence to Elliott H. Lieb.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Frank, R.L., Laptev, A., Lieb, E.H. et al. Lieb–Thirring Inequalities for Schrödinger Operators with Complex-valued Potentials. Lett Math Phys 77, 309–316 (2006).

Download citation

Mathematics Subject Classification

  • Primary, 35P15
  • Secondary, 81Q10


  • Schrödinger operator
  • Lieb–Thirring inequalities
  • complex potential