Skip to main content
Log in

Left-Symmetric Algebras in Hydrodynamics

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Left-Symmetric algebras are shown to appear naturally in integrable hydrodynamical systems. First, to a data a Left-Symmetric algebra and an operator of strong deformation on it is attached an infinite commuting hierarchy of integrable systems of hydrodynamical type in 1+1−d. Second, this picture (without deformation) is embedded into an infinite-component integrable hydrodynamic chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benney D.J. (1973) Some properties of long nonlinear waves. Stud. Appl. Math. L11, 45–50

    Google Scholar 

  2. Bluman G.W., Cole J.D. (1969) The generalized similarity solution of the heat equation. J. Math. Mech. 18, 1025–1042

    MATH  MathSciNet  Google Scholar 

  3. Dubrovin B.A., Novikov S.P. (1993) Hydrodynamics of solition lattices. Soviet Scientific Reviews, Section C: Mathematical Physics Reviews, vol. 9. Part 4. Hardwood Academic Publishers GmbH, Yverdon

    Google Scholar 

  4. Ferapontov E.V. (1995) Isoparametric hypersurfaces in spheres, integrable nondiagonalizable systems of hydrodynamic type, and N-wave systems. Diff. Geom. Appl. 5, 335–369

    Article  MATH  MathSciNet  Google Scholar 

  5. Ferapontov E.V. (1995) Dupin hypersurfaces and integrable Hamiltonian systems of hydrodynamic type which do not possess Riemann invariants. Diff. Geom. Appl. 5, 121–152

    Article  MATH  MathSciNet  Google Scholar 

  6. Fokas A.S., Fuchssteiner B. (1981) Bäcklund transformations for hereditary symmetries. Nonlinear Anal. 5, 423–432

    Article  MATH  MathSciNet  Google Scholar 

  7. Golubchik I.Z., Sokolov, V.V.: On integrable systems generated by the constant solution of the Yang–Baxter equation. Funktsional. Anal. i Prilozhen. 30(4), 68–71 (1966) (Russian); Funct. Anal. Appl. 30(4), 275–277 (1977) (English)

    Google Scholar 

  8. Harrison B.K., Estabrook F.B. (1971) Geometric approach to invariance groups and solution of partial differential systems. J. Math. Phys. 12, 653–666

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Koszul J.-L. (1961) Domaines Bornés Homogènes Et Orbites De Groupes De Transformations Affines. Bull. Soc. Math. France 89, 515–533

    MATH  MathSciNet  Google Scholar 

  10. Kupershmidt B.A. (1992) The variational principles of dynamics. World Scientific, Singapore

    MATH  Google Scholar 

  11. Kupershmidt B.A. (1994) Non-abelian phase spaces. J. Phys. A 27, 2801–2810

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Kupershmidt B.A. (1999) On the nature of the Virasoro algebra. J. Nonlin. Math. Phys. 6, 222–245

    Article  MATH  MathSciNet  Google Scholar 

  13. Kupershmidt, B.A.: KP or mKP. Noncommutative mathematics of Lagrangian, Hamiltonian, and integrable systems. American Mathematic Society Providence (2000)

  14. Mokhov, O.I.: Compatible Poisson structures of hydrodynamic type and associativity equations. Tr. Mat. Inst. Stekoova 225, 284–300 (1999) (Russian); Proc. Steklov Inst. Math. 225, 269–284 (1999) (English)

  15. Olver P.J. (1977) Evolution equations possessing infinitely many symmetries. J. Math. Phys. 18, 1212–1215

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Pavlov M.V. (2003) Integrable hydrodynamic chains. J. Math. Phys. 44, 4134–4156

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Pavlov, M.V., Svinolupov, S.I., Sharipov, R.A.: An invariant criterion for hydrodynamic integrability. Funktsional. Anal. i Prilozhen. 30(1), 18–29, 96 (1996) (Russian); Funct. Anal. Appl. 30(1), 15–22 (1996) (English); arXiv:solv-int/9407003

    Google Scholar 

  18. Svinolupov S.I. (1989) On the analogues of the Burgers equation. Phys. Lett. A 135, 32–36

    Article  ADS  MathSciNet  Google Scholar 

  19. Svinolupov, S.I., Sokolov, V.V.: Vector-matrix generalizations of classical integrable equations. Teoret. Mat. Fiz. 100(2), 214–218 (1994) (Russian); Theor. Math. Phys. 100(2), 959–962 (1994) (English)

  20. Tsarev, S.P.: Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type. Dokl. Akad. Nauk SSSR 282(3), 534–537 (1985) (Russian); Soviet Math. Dokl. 31(3), 488–491 (1985) (English)

    Google Scholar 

  21. Tsarev, S.P.: The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method. Izv. Akad. Nauk SSSR Ser. Mat. 54(5), 1048–1068 (1990) (Russian); Math. USSR-Izv 37(2), 397–419 (English)

  22. Vinberg, E.B.: Homogeneous cones. Dokl. Akad. Nauk SSSR 133, 9–12 (1960) (Russian); Sov. Math. Dokl. 1, 787–790 (1960) (English)

  23. Vinberg, E.B.: Convex homogeneous domains. Dokl. Akad. Nauk. SSSR 141, 521–524 (1961) (Russian); Sov. Math. Dokl. 2, 1470–1473 (1961) (English)

    Google Scholar 

  24. Vinberg, E.B.: The theory of convex homogeneous cones. Trudyu Mosc. Math. Obshchestva 12, 303–358 (1963) (Russian); Trans. Mosc. Math. Soc. 12, 340–403 (1963) (English)

  25. Webb G.M. (1990) Lie symmetries of a coupled nonlinear Burgers-heat equation system. J. Phys. A 23, 3885–3894

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris A. Kupershmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kupershmidt, B.A. Left-Symmetric Algebras in Hydrodynamics. Lett Math Phys 76, 1–18 (2006). https://doi.org/10.1007/s11005-006-0061-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-006-0061-y

Mathematics Subject Classifications (2000)

Keywords

Navigation