Skip to main content
Log in

Graph Complexes in Deformation Quantization

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Kontsevich’s formality theorem and the consequent star-product formula rely on the construction of an L -morphism between the DGLA of polyvector fields and the DGLA of polydifferential operators. This construction uses a version of graphical calculus. In this article we present the details of this graphical calculus with emphasis on its algebraic features. It is a morphism of differential graded Lie algebras between the Kontsevich DGLA of admissible graphs and the Chevalley–Eilenberg DGLA of linear homomorphisms between polyvector fields and polydifferential operators. Kontsevich’s proof of the formality morphism is reexamined in this light and an algebraic framework for discussing the tree-level reduction of Kontsevich’s star-product is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akman, F., Ionescu, L.M., Sissokho, P.A.: On deformation theory and graph homology. math.QA/0507077

  • Arnal D., Amar N.B., Masmoudi M. (1999). Cohomology of good graphs and Kontsevich linear star products. Lett. Math. Phys. 48(4): 291–306 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Arnal D., Masmoudi M. (2002). Cohomologie de H ochschild des graphes de K ontsevich. Bull. Soc. Math. France 130(1): 49–69

    MATH  MathSciNet  Google Scholar 

  • Arnal D. (2002). Dominique Manchon and Mohsen Masmoudi. Choix des signes pour la formalité de M. Kontsevich. Pacific J. Math. 203 (1): 23–66

    Article  MATH  MathSciNet  Google Scholar 

  • Arnal D. (2004). Kontsevich formality and cohomologies for graphs. Lett. Math. Phys. 69: 205–222

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Cattaneo A.S., Dherin B., Felder G. (2005). Formal symplectic groupoid. Comm. Math. Phys. 253(3): 645–674

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Cattaneo A.S., Felder G. (2000). A path integral approach to the Kontsevich quantization formula. Comm. Math. Phys. 212(3): 591–611

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Cattaneo A.S. Formality and star products. Lecture notes by Davide Indelicato. math.QA/0403135

  • Connes A., Kreimer D. (1998). Hopf algebras, renormalization and noncommutative geometry. Comm. Math. Phys. 199(1): 203–242

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Dito G. (1999). Kontsevich star products on the dual of a Lie algebra. Lett. Math. Phys. 48, 307–322

    Article  MATH  MathSciNet  Google Scholar 

  • Dito, G., Sternheimer, D.: Deformation quantization: genesis, developments and metamorphoses. In: Deformation quantization (Strasbourg, 2001), vol. 1 of IRMA Lect. Math. Theor. Phys., pp. 9–54. de Gruyter, Berlin (2002)

  • Gamella, A., Halbout, G.: G -formality theorem in terms of graphs and associated Chevalley–Eilenberg–Harrison cohomology. preprint IRMA 2003-05-21 n° 2003-015, http://www-irma.u-strasbg.fr/irma/publications/2003/03015.shtml

  • Ginot, G., Halbout, G.: Lifts of C and L -morphisms to G -morphisms. In: Proceedings of the American Mathematical Societies (to appear). math.QA/0304004

  • Ionescu, L.M.: Perturbative quantum field theory and configuration space integrals. (2003) hep-th/0307062

  • Ionescu, L.M.: A combinatorial approach to coefficients in deformation quantization. (2004) math.QA/0404389

  • Ionescu, L.M.: Cohomology of Feynman graphs and perturbative quantum field theory. In: Kovras, O. (ed.) Focus on quantum field theory, vol. 1. Nova (2004)

  • Ionescu L.M. (2004). Perturbative quantum field theory and L -algebras. In: Bryden J. (ed). Advances in topological field theory, Proceedings of the NATO ARW on new techniques in topological quantum field theory. Kluwer, Dordrecht, pp. 243–252

    Google Scholar 

  • Ionescu, L.M., Sissokho, P.A.: A canonical semi-classical star-product. math.QA/0507053

  • Kathotia V. (2000). Kontsevich’s universal formula for deformation quantization and the Campbell– Baker– Hausdorff formula. Int. J. Math. 11(4): 523–551

    Article  MATH  MathSciNet  Google Scholar 

  • Keller, B.: Notes for an introduction to Kontsevich’s quantization theorem. http://www.math.jussieu.fr/keller/publ/emalca.pdf

  • Kontsevich, M.: Formal (non)commutative symplectic geometry. In: The Gel’fand mathematical Seminars, 1990–1992, pp. 173–187. Birkhäuser Boston, Boston, MA (1993)

  • Kontsevich, M.: Feynman diagrams and low-dimensional topology. In: First European congress of mathematics, vol. II (Paris, 1992), vol. 120 of Progr. Math. pp. 97–121. Birkhäuser, Basel (1994)

  • Kontsevich, M.: Formality conjecture. In: Deformation theory and symplectic geometry (Ascona, 1996), vol. 20 of Math. Phys. Stud. pp. 139–156. Kluwer Dordrecht (1997)

  • Kontsevich M. (2003). Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3): 157–216

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Kontsevich M. (1999). Operads and motives in deformation quantization. Lett. Math. Phys. 48(1): 35–72

    Article  MATH  MathSciNet  Google Scholar 

  • Kontsevich, M., Soibelman, Y.: Homological mirror symmetry and torus fibrations. In: Symplectic geometry and mirror symmetry (Seoul, 2000), pp. 203–263. World Scientific River Edge, NJ (2001)

  • Markl M. (2004). Homotopy algebras are homotopy algebras. Forum Math. 16(1): 129–160

    Article  MATH  MathSciNet  Google Scholar 

  • Mochizuki T. (2002). On the morphism of Duflo– Kirillov type. J. Geom. Phys. 41(1–2): 73–113

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Polyak M. (2003). Quantization of linear Poisson structures and degrees of maps. Lett. Math. Phys. 66(1–2): 15–35

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Voronov, A.A.: Lecture notes on operads and quantum field theory. Lecture 9: The A -operad and A -algebras. http://www.math.umn.edu/voronov/8390

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Fiorenza.

Additional information

Mathematics Subject Classifications (2000): 53D55, secondary 18G55

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiorenza, D., Ionescu, L.M. Graph Complexes in Deformation Quantization. Lett Math Phys 73, 193–208 (2005). https://doi.org/10.1007/s11005-005-0017-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-005-0017-7

Keywords

Navigation