Skip to main content
Log in

Generating Operators of the Krasil'shchik–Schouten Bracket

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is proved that given a divergence operator on the structural sheaf of graded commutative algebras of a supermanifold, it is possible to construct a generating operator for the Krashil'shchik–Schouten bracket. This is a particular case of the construction of generating operators for a special class of bigraded Gerstenhaber algebras. Also, some comments on the generalization of these results to the context of n-graded Jacobi algebras are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batalin, I. A., and Vilkovisky, G. A.: Gauge algebra and quantization, Phys. Lett. B. 102(1) (1981), 27–31.

    Google Scholar 

  2. Grabowski, J., and Marmo, G.: The graded Jacobi algebras and (co)homology, J. Phys. A: Math. Gen. 36 (2003), pp. 161–181.

    Google Scholar 

  3. Kostant, B.: Graded manifolds, graded Lie theory, and prequantization, In: Differential Geometrical Methods in Math. Phys. (Proc. Sympos. Univ. Bonn, 1975), Lecture Notes in Math. 570, Springer, Berlin, 1977, pp. 177–306.

    Google Scholar 

  4. Kosmann-Schwarzbach, Y: Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math. 41 (1995), 153–165.

    Google Scholar 

  5. Kosmann-Schwarzbach, Y: Graded Poisson brackets and field theory, In: J. Bertrand et al. (eds), Modern Group Theoretical Methods in Physics, Kluwer, Dordrecht, 1995, pp. 189–196.

    Google Scholar 

  6. Kosmann-Schwarzbach,Y., and Monterde, J: Divergence operators and odd Poisson brackets, Ann. Inst. Fourier 52 (2) (2002), 419–456.

    Google Scholar 

  7. Koszul, J. L: Crochet de Schouten–Nijenhuis et cohomologie, Astérisque, Hors série 1985, pp. 257–271.

  8. Krasil'shchick, I. S.: Supercanonical algebras and Schouten brackets, Mat Zametki 49 (1) (1991), 70–76; Math. Notes 49 (1) (1991), 50–54.

    Google Scholar 

  9. Leites, D. A: Introduction to the theory of supermanifolds, Russian Math. Surveys 35 (1980), 1–64.

    Google Scholar 

  10. Michor, P. W: Remarks on the Schouten–Nijenhuis bracket, Proc. Winter School on Geometry and Physics (Srní, 1987), Rend. Circ. Mat. Palermo 2 (Suppl. 16) (1987), 207–215.

    Google Scholar 

  11. Schwarz, A. S: geometry of Batalin–Vilkovisky quantization, Comm. Math. Phys. 155 (1993), 249–260.

    Google Scholar 

  12. Serre, J. P: Un théorè me de dualité, Comment Math. Helv. 29 (1955), 9–26.

    Google Scholar 

  13. Witten, E. A note on the antibracket formalism, Modern Phys. Lett. A 5 (1990), 487–494.

    Google Scholar 

  14. Wu, J., Gerstenhaber, M., and Stasheff, J.: On the Hodge decomposition of differential graded bialgebras, J. Pure Appl. Algebra 162 (1) (2001), 103–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallejo, J. Generating Operators of the Krasil'shchik–Schouten Bracket. Letters in Mathematical Physics 68, 1–17 (2004). https://doi.org/10.1007/s11005-004-4066-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-004-4066-0

Navigation