Abstract
Faults are crucial subsurface features that significantly influence the mechanical behavior and hydraulic properties of rock masses. Interpreting them from seismic data may lead to various scenarios due to uncertainties arising from limited seismic bandwidth, possible imaging errors, and human interpretation noise. Although methods addressing fault uncertainty exist, only a few of them can produce curved and sub-seismic faults simultaneously while quantitatively honoring seismic images and avoiding anchoring to a reference interpretation. This work uses a mathematical framework of marked point processes to approximate fault networks in two dimensions with a set of line segments. The proposed stochastic model, namely the Candy model, incorporates simple pairwise and nearby connections to capture the interactions between fault segments. The novelty of this approach lies in conditioning the stochastic model using input images of fault probabilities generated by a convolutional neural network. The Metropolis–Hastings algorithm is used to generate various scenarios of fault network configurations, thereby exploring the model space associated with the Candy model and reflecting the uncertainty. Probability level sets constructed from these fault segment configurations provide insights on the obtained realizations and on the model parameters. The empty space function produces a ranking of the generated fault networks against an existing interpretation by testing and quantifying their spatial variability. The approach is applied to two-dimensional sections of seismic data, in the Central North Sea.
Similar content being viewed by others
References
Aydin O, Caers JK (2017) Quantifying structural uncertainty on fault networks using a marked point process within a Bayesian framework. Tectonophysics 712–713:101–124. https://doi.org/10.1016/j.tecto.2017.04.027
Azencott R (1988) Image analysis and Markov fields. In: Proc ICIAM’87 pp 53–61
Azencott R, Chalmond B, Coldefy F (1995) Markov fusion of a pair of noisy images to detect intensity valleys. Int J Comput Vision 16(2):135–145. https://doi.org/10.1007/BF01539552
Baddeley A, Rubak E, Turner R (2016) Spatial point patterns: methodology and applications with R. CRC Press, Boca Raton
Bailey W, Walsh J, Manzocchi T (2005) Fault populations, strain distribution and basement fault reactivation in the East Pennines Coalfield, UK. J Struct Geol 27(5):913–928. https://doi.org/10.1016/j.jsg.2004.10.014
Barna K, Szirányi T, Borda M, Lavialle O (2015) Marked point processes for enhancing seismic fault patterns. J Appl Geophys 118:115–123. https://doi.org/10.1016/j.jappgeo.2015.04.009
Bedle H, van Gestel JP (2021) Introduction to this special section: seismic interpretation. Lead Edge 40(7):482–483
Bense V, Gleeson T, Loveless S, Bour O, Scibek J (2013) Fault zone hydrogeology. Earth Sci Rev 127:171–192. https://doi.org/10.1016/j.earscirev.2013.09.008
Bernardo JM, Smith AF (2009) Bayesian theory, vol 405. John Wiley & Sons, New York
Bond CE (2015) Uncertainty in structural interpretation: lessons to be learnt. J Struct Geol 74:185–200. https://doi.org/10.1016/j.jsg.2015.03.003
Bonneau F, Caumon G, Renard P (2016) Impact of a stochastic sequential initiation of fractures on the spatial correlations and connectivity of discrete fracture networks. J Geophys Res Solid Earth 121(8):5641–5658
Bonnet E, Bour O, Odling NE, Davy P, Main I, Cowie P, Berkowitz B (2001) Scaling of fracture systems in geological media. Rev Geophys 39(3):347–383
Bonnet E, Bour O, Odling NE, Davy P, Main I, Cowie P, Berkowitz B (2001) Scaling of fracture systems in geological media. Rev Geophys 39(3):347–383. https://doi.org/10.1029/1999RG000074
Botter C, Cardozo N, Lecomte I, Rotevatn A, Paton G (2017) The impact of faults and fluid flow on seismic images of a relay ramp over production time. Pet Geosci 23(1):17–28. https://doi.org/10.1144/petgeo2016-027
Bresenham JE (1965) Algorithm for computer control of a digital plotter. IBM Syst J 4(1):25–30
Camanni G, Roche V, Childs C, Manzocchi T, Walsh J, Conneally J, Saqab MM, Delogkos E (2019) The three-dimensional geometry of relay zones within segmented normal faults. J Struct Geol 129:103895. https://doi.org/10.1016/j.jsg.2019.103895
Carpenter M, Williams JN, Fagereng Åke, Wedmore LN, Biggs J, Mphepo F, Mdala H, Dulanya Z, Manda B (2022) Comparing intrarift and border fault structure in the Malawi Rift: implications for normal fault growth. J Struct Geol 165:104761. https://doi.org/10.1016/j.jsg.2022.104761
Cherpeau N, Caumon G (2015) Stochastic structural modelling in sparse data situations. Pet Geosci 21(4):233–247. https://doi.org/10.1144/petgeo2013-030
Childs C, Manzocchi T, Walsh JJ, Bonson CG, Nicol A, Schöpfer MP (2009) A geometric model of fault zone and fault rock thickness variations. J Struct Geol 31(2):117–127
Childs C, Manzocchi T, Walsh JJ, Bonson CG, Nicol A, Schöpfer MP (2009) A geometric model of fault zone and fault rock thickness variations. J Struct Geol 31(2):117–127. https://doi.org/10.1016/j.jsg.2008.08.009
Childs C, Worthington RP, Walsh JJ, Roche V (2019) Conjugate relay zones: geometry of displacement transfer between opposed-dipping normal faults. J Struct Geol 118:377–390. https://doi.org/10.1016/j.jsg.2018.11.007
Chiu SN, Stoyan D, Kendall WS, Mecke J (2013) Stochastic geometry and its applications. Wiley series in probability and statistics. John Wiley & Sons Inc, Chichester
Chopra S, Castagna J, Portniaguine O (2006) Seismic resolution and thin-bed reflectivity inversion. CSEG recorder 31(1):19–25
Davy P, Le Goc R, Darcel C, Bour O, De Dreuzy JR, Munier R (2010) A likely universal model of fracture scaling and its consequence for crustal hydromechanics. J Geophys Res Solid Earth 115(B10):2009JB007043. https://doi.org/10.1029/2009JB007043
Davy P, Le Goc R, Darcel C (2013) A model of fracture nucleation, growth and arrest, and consequences for fracture density and scaling. J Geophys Res Solid Earth 118(4):1393–1407
Descombes X (ed) (2012) Stochastic geometry for image analysis (Digital Signal and Image Processing Series). John Wiley & Sons, New York
Dimmen V, Rotevatn A, Lecomte I (2023) Imaging of small-scale faults in seismic reflection data: insights from seismic modelling of faults in outcrop. Mar Pet Geol 147:105980. https://doi.org/10.1016/j.marpetgeo.2022.105980
Faleide TS, Braathen A, Lecomte I, Mulrooney MJ, Midtkandal I, Bugge AJ, Planke S (2021) Impacts of seismic resolution on fault interpretation: insights from seismic modelling. Tectonophysics 816:229008. https://doi.org/10.1016/j.tecto.2021.229008
Fossen H, Johansen TES, Hesthammer J, Rotevatn A (2005) Fault interaction in porous sandstone and implications for reservoir management; examples from southern Utah. AAPG Bull 89(12):1593–1606. https://doi.org/10.1306/07290505041
Foxall R, Baddeley A (2002) Nonparametric measures of association between a spatial point process and a random set, with geological applications. J R Stat Soc C 51(2):165–182
Froner B, Purves S, Lowell J, Henderson J (2013) Perception of visual information: the role of colour in seismic interpretation. First Break 31(4):3010. https://doi.org/10.3997/1365-2397.2013010
Gabriel AA, Ampuero JP, Dalguer LA, Mai PM (2013) Source properties of dynamic rupture pulses with off-fault plasticity. J Geophys Res Solid Earth 118(8):4117–4126. https://doi.org/10.1002/jgrb.50213
Gelman A, Carlin JB, Stern HS, Rubin DB (1995) Bayesian data analysis. Chapman and Hall/CRC, Boca Raton
Geode-Solutions (2022) OpenGeode framework. https://doi.org/10.5281/ZENODO.3610370
Georgsen F, Røe P, Syversveen AR, Lia O (2012) Fault displacement modelling using 3D vector fields. Comput Geosci 16:247–259
Geyer CJ, Møller J (1994) Simulation procedures and likelihood inference for spatial point processes. Scand J Stat 1:359–373
Godefroy G, Caumon G, Ford M, Laurent G, Jackson CAL (2018) A parametric fault displacement model to introduce kinematic control into modeling faults from sparse data. Interpretation 6(2):B1–B13. https://doi.org/10.1190/INT-2017-0059.1
Godefroy G, Caumon G, Laurent G, Bonneau F (2019) Structural interpretation of sparse fault data using graph theory and geological rules: fault data interpretation. Math Geosci 51(8):1091–1107. https://doi.org/10.1007/s11004-019-09800-0
Godefroy G, Caumon G, Laurent G, Bonneau F (2021) Multi-scenario interpretations from sparse fault evidence using graph theory and geological rules. J Geophys Res Solid Earth 126(2):2020JB020022. https://doi.org/10.1029/2020JB020022
Goodwin H, Aker E, Røe P (2022) Stochastic modeling of subseismic faults conditioned on displacement and orientation maps. Math Geosci 54(1):207–224. https://doi.org/10.1007/s11004-021-09965-7
Hale D (2013) Methods to compute fault images, extract fault surfaces, and estimate fault throws from 3D seismic images. Geophysics 78(2):O33–O43
Heinrich P, Stoica RS, Tran VC (2012) Level sets estimation and Vorob’ev expectation of random compact sets. Spatial Stat 2:47–61. https://doi.org/10.1016/j.spasta.2012.10.001
Holden L, Mostad P, Nielsen BF, Gjerde J, Townsend C, Ottesen S (2003) Stochastic structural modeling. Math Geol 35(8):899–914. https://doi.org/10.1023/B:MATG.0000011584.51162.69
Iacopini D, Butler RW (2011) Imaging deformation in submarine thrust belts using seismic attributes. Earth Planet Sci Lett 302(3–4):414–422. https://doi.org/10.1016/j.epsl.2010.12.041
Islam MR, Shinjo R (2009) Mining-induced fault reactivation associated with the main conveyor belt roadway and safety of the Barapukuria Coal Mine in Bangladesh: constraints from BEM simulations. Int J Coal Geol 79(4):115–130. https://doi.org/10.1016/j.coal.2009.06.007
Jacquemin P, Mallet JL (2005) Automatic faults extraction using double hough transform. In: SEG International exposition and annual meeting, SEG, pp SEG–2005
Journel A (1989) Fundamentals of geostatistics in five lessons, short course geol. AGU, Washington
Julio C, Caumon G, Ford M (2015) Sampling the uncertainty associated with segmented normal fault interpretation using a stochastic downscaling method. Tectonophysics 639:56–67. https://doi.org/10.1016/j.tecto.2014.11.013
Keresztes B (2009) Segmentation de zones d’intérêt par processus objets: application à la détection des réseaux de failles sismiques. PhD thesis, Bordeaux 1
Kleinschroth F, Healey JR, Gourlet-Fleury S, Mortier F, Stoica RS (2017) Effects of logging on roadless space in intact forest landscapes of the Congo Basin. Conserv Biol 31(2):469–480
Kruuse M, Tempel E, Kipper R, Stoica RS (2019) Photometric redshift galaxies as tracers of the filamentary network. Astron Astrophys 625:A130. https://doi.org/10.1051/0004-6361/201935096
Lacoste C (2004) Extraction de réseaux linéiques à partir d’images satellitaires et aériennes par processus ponctuels marqués. PhD thesis, Université Nice Sophia Antipolis
van Lieshout M (2000) Markov point processes and their applications. World Scientific, Singapore
van Lieshout MNM, Stoica RS (2003) The Candy model: properties and inference. Stat Neerl 57(2):177–206. https://doi.org/10.1111/1467-9574.00227
Lopes RH, Hobson PR, Reid ID (2008) Computationally efficient algorithms for the two-dimensional Kolmogorov–Smirnov test. J Phys Conf Ser 119:042019
Maerten L, Pollard DD, Maerten F (2001) Digital mapping of three-dimensional structures of the Chimney Rock fault system, central Utah. J Struct Geol 23(4):585–592. https://doi.org/10.1016/S0191-8141(00)00142-5
Manzi MS, Cooper GR, Malehmir A, Durrheim RJ (2020) Improved structural interpretation of legacy 3D seismic data from Karee platinum mine (South Africa) through the application of novel seismic attributes. Geophys Prospect 68(1):145–163. https://doi.org/10.1111/1365-2478.12900
Manzocchi T, Walsh JJ, Nell P, Yielding G (1999) Fault transmissibility multipliers for flow simulation models. Pet Geosci 5(1):53–63. https://doi.org/10.1144/petgeo.5.1.53
Marfurt KJ, Kirlin RL, Farmer SL, Bahorich MS (1998) 3-D seismic attributes using a semblance-based coherency algorithm. Geophysics 63(4):1150–1165. https://doi.org/10.1190/1.1444415
Moller J, Waagepetersen RP (2003) Statistical inference and simulation for spatial point processes. CRC Press, Boca Raton
Mosegaard K, Sambridge M (2002) Monte Carlo analysis of inverse problems. Inverse Probl 18(3):R29–R54. https://doi.org/10.1088/0266-5611/18/3/201
Muru MM, Tempel E (2023) Using photometric redshift data to improve the detection of galactic filaments with the Bisous model. ArXiv:2301.02710 [astro-ph]
Nicol A, Walsh J, Watterson J, Bretan P (1995) Three-dimensional geometry and growth of conjugate normal faults. J Struct Geol 17(6):847–862
Nixon CW, Sanderson DJ, Bull JM (2011) Deformation within a strike-slip fault network at Westward Ho!, Devon U.K.: domino vs conjugate faulting. J Struct Geol 33(5):833–843. https://doi.org/10.1016/j.jsg.2011.03.009
Odonne F, Massonnat G (1992) Volume loss and deformation around conjugate fractures: comparison between a natural example and analogue experiments. J Struct Geol 14(8–9):963–972. https://doi.org/10.1016/0191-8141(92)90027-T
Ravasi M, Vasconcelos I, Curtis A, Kritski A (2015) Vector-acoustic reverse time migration of Volve ocean-bottom cable data set without up/down decomposed wavefields. Geophysics 80(4):S137–S150. https://doi.org/10.1190/geo2014-0554.1
Reype C (2022) Probabilistic modelling and Bayesian inference for the analysis of geological fluid mixing systems: pattern detection and parameter estimation. Université de Lorraine, Grand Est
Roche V, Camanni G, Childs C, Manzocchi T, Walsh J, Conneally J, Saqab MM, Delogkos E (2021) Variability in the three-dimensional geometry of segmented normal fault surfaces. Earth Sci Rev 216:103523. https://doi.org/10.1016/j.earscirev.2021.103523
Rosenbaum MS, Culshaw MG (2003) Communicating the risks arising from geohazards. J R Stat Soc A 166(2):261–270. https://doi.org/10.1111/1467-985X.00275
Soliva R, Benedicto A (2004) A linkage criterion for segmented normal faults. J Struct Geol 26(12):2251–2267
Soliva R, Benedicto A, Schultz R, Maerten L, Micarelli L (2008) Displacement and interaction of normal fault segments branched at depth: Implications for fault growth and potential earthquake rupture size. J Struct Geol 30(10):1288–1299
Statoil (1993) discovery evaluation report. Tech. rep., Sleipner Petek, https://datavillagesa.blob.core.windows.net/volve/Reports/Discovery_report.pdf
Stoica R (2010) Marked point processes for statistical and morphological analysis of astronomical data. Eur Phys J Spec Top 186(1):123–165. https://doi.org/10.1140/epjst/e2010-01262-7
Stoica R, Descombes X, Van Lieshout M, Zerubia J (2002) An application of marked point process to the extraction of linear networks for images. In: Spatial statistics through applications, WIT Press
Stoica RS (2001) Processus Ponctuels pour l’Extraction de R seaux Lin ques dans les Images Satellitaires et A riennes. Université de Lorraine, Grand Est
Stoica RS (2014) Modélisation probabiliste et inférence statistique pour l’analyse des données spatialisées. Habilitation à diriger des recherches en mathématiques, l’Université Lille 1, pp 232
Stoica RS, Descombes X, Zérubia J (2001) Road extraction in remote sensed images using stochastic geometry framework. In: AIP conference proceedings, American institute of physics vol 568, pp 531–542
Stoica RS, Descombes X, Zerubia J (2004) A gibbs point process for road extraction from remotely sensed images. Int J Comput Vision 57(2):121–136. https://doi.org/10.1023/B:VISI.0000013086.45688.5d
Stoica RS, Martínez VJ, Mateu J, Saar E (2005) Detection of cosmic filaments using the Candy model. Astron Astrophys 434(2):423–432. https://doi.org/10.1051/0004-6361:20042409
Stoica RS, Gay E, Kretzschmar A (2007) Cluster pattern detection in spatial data based on Monte Carlo inference. Biom J 49(4):505–519. https://doi.org/10.1002/bimj.200610326
Stoica RS, Martínez VJ, Saar E (2007) A three-dimensional object point process for detection of cosmic filaments: detection of cosmic filaments. J Roy Stat Soc Ser C Appl Stat 56(4):459–477. https://doi.org/10.1111/j.1467-9876.2007.00587.x
Stoica RS, Philippe A, Gregori P, Mateu J (2016) ABC Shadow algorithm: a tool for statistical analysis of spatial patterns. arXiv:1507.04228 [math, stat] ArXiv: 1507.04228
Stoica RS, Philippe A, Gregori P, Mateu J (2017) ABC Shadow algorithm: a tool for statistical analysis of spatial patterns. Stat Comput 27(5):1225–1238. https://doi.org/10.1007/s11222-016-9682-x
Szydlik TJ, Way S, Smith P, Aamodt L, Friedrich C (2006) 3D PP/PS prestack depth migration on the Volve field. In: 68th EAGE Conference and Exhibition incorporating SPE EUROPEC 2006, EAGE Publications BV, pp cp–2
Tempel E, Stoica RS, Martínez VJ, Liivamägi LJ, Castellan G, Saar E (2014) Detecting filamentary pattern in the cosmic web: a catalogue of filaments for the SDSS. Mon Not R Astron Soc 438(4):3465–3482. https://doi.org/10.1093/mnras/stt2454
Thore P, Shtuka A, Lecour M, Ait-Ettajer T, Cognot R (2002) Structural uncertainties: determination, management, and applications. Geophysics 67(3):840–852
Torabi A, Berg SS (2011) Scaling of fault attributes: a review. Mar Pet Geol 28(8):1444–1460. https://doi.org/10.1016/j.marpetgeo.2011.04.003
Wellmann F, Caumon G (2018) 3-D structural geological models: concepts, methods, and uncertainties. Adv Geophys 59:1–121. https://doi.org/10.1016/bs.agph.2018.09.001
Wu X, Shi Y, Fomel S, Liang L, Zhang Q, Yusifov AZ (2019) FaultNet3D: predicting fault probabilities, strikes, and dips with a single convolutional neural network. IEEE Trans Geosci Remote Sens 57(11):9138–9155. https://doi.org/10.1109/TGRS.2019.2925003
Wu X, Geng Z, Shi Y, Pham N, Fomel S, Caumon G (2020) Building realistic structure models to train convolutional neural networks for seismic structural interpretation. Geophysics 85(4):WA27–WA39. https://doi.org/10.1190/geo2019-0375.1
Acknowledgements
This work was performed in the frame of the RING project at Université de Lorraine (www.ring-team.org). We would like to thank for their support the industrial and academic sponsors of the RING-GOCAD Consortium managed by ASGA. The RING software corresponding to this paper is available as RING-PointProcess, depending on the OpenGeode software (Geode-Solutions 2022). We also acknowledge Geode-solutions for the OpenGeode open source environment and proprietary tools (geometric, distance objects and grids). We thank the Editor-in-Chief, Roussos Dimitrakopoulos, and an anonymous reviewer for their comments, which helped us to improve the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Appendix A Supplementary Materials
Appendix A Supplementary Materials
1.1 Appendix A.1 Algorithm for Simulating the Candy Model
In this paper, the MH (algorithm 1) allows us to sample the distribution of the Candy model.
1.2 Appendix A.2 Comparison Between Candy Model Realizations and the Thinning-Based Skeleton Through the Kolmogorov–Smirnov (KS) Test
In complement to the analysis carried out in Sect. 4.3.2, the Kolmogorov–Smirnov (KS) test is used for comparing the Candy realizations and the thinning-based interpretation. This is a non-parametric statistic, designed for comparing two empirical distributions, by defining the largest absolute difference between the two cumulative distribution functions as a measure of disagreement (Lopes et al. 2008).The null hypothesis states that the samples \(\tilde{F}_{\theta _k}(j)\) and \({\widehat{F}}_\textrm{skeleton}(j)\), for \(j = 1,\ldots , n\), are drawn from the same distribution. A confidence level of \(95 \%\) is chosen, that is, indicating that the null hypothesis will be rejected in favor of the alternative if the p-value is less than 0.05.
The analysis for the KS test is carried out using the scipy.stats.ks_2samp function from the SciPy library. This test performs the two-sample KS test of goodness of fit, which compares the underlying distributions of two independent samples from the continuous empty space functions of the Candy realizations and the skeleton. The test is carried out on three images (Fig. 13), each one using five parameters (Table 5), in which \(N_\textrm{sim} = 100\) simulations are run. The comparison between the two interpretations is done for each parameter set, through the median \(\tilde{F}_{\theta _k}\) curves obtained for each model parameter set \(\theta _k\) with the empty space \({\widehat{F}}_\textrm{skeleton}\) of the skeleton.
Figure 14 shows the results of the Kolmogorov–Smirnov statistical test on boxes in either green or red. For the A image, the p-values of all parameter sets are greater than 0.05, which means that the null hypothesis is not rejected. This is consistent with the results of Fig. 14, even though the envelope test seems to be more discriminating. Actually, envelopes show how the realizations of the Candy model from such an image fill the space in a way quite close to the skeleton process. For image B, only the p-value corresponding to the parameter set \(\theta _2\) is less than 0.05, indicating that Candy model realizations fill the space in a way quite different from the skeleton for this image (which is also consistent with the two other images). For image C, only the p-value of the parameter set \(\theta _3\) is greater than 0.05, which indicates the parameter set induces realizations filling the space in a closer way than the skeleton.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Taty Moukati, F., Stoica, R.S., Bonneau, F. et al. From Fault Likelihood to Fault Networks: Stochastic Seismic Interpretation Through a Marked Point Process with Interactions. Math Geosci (2024). https://doi.org/10.1007/s11004-024-10150-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11004-024-10150-9