Skip to main content

Geostatistical Rock Physics Inversion for Predicting the Spatial Distribution of Porosity and Saturation in the Critical Zone

A Correction to this article was published on 11 July 2022

This article has been updated

Abstract

Understanding the subsurface structure and function in the near-surface groundwater system, including fluid flow, geomechanical, and weathering processes, requires accurate predictions of the spatial distribution of petrophysical properties, such as rock and fluid (air and water) volumetric fractions. These properties can be predicted from geophysical measurements, such as electrical resistivity tomography and refraction seismic data, by solving a rock physics inverse problem. A Bayesian inversion approach based on a Monte Carlo implementation of the Bayesian update problem is developed to generate multiple realizations of porosity and water saturation conditioned on geophysical data. The model realizations are generated using a geostatistical algorithm and updated according to the ensemble smoother approach, an efficient Bayesian data assimilation technique. The prior distribution includes a spatial correlation function such that the model realizations mimic the geological spatial continuity. The result of the inversion includes a set of realizations of porosity and water saturation, as well as the most likely model and its uncertainty, that are crucial to understand fluid flow, geomechanical, and weathering processes in the critical zone. The proposed approach is validated on two synthetic datasets motivated by the Southern Sierra Critical Zone Observatory and is then applied to data collected on a mountain hillslope near Laramie, Wyoming. The inverted results match the measurements, honor the spatial correlation prior model, and provide geologically realistic petrophysical models of weathered rock at Earth’s surface.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Change history

References

  • Allard D, Fabbri P, Gaetan C (2021) Modeling and simulating depositional sequences using latent Gaussian random fields. Math Geosci 53(4):469–497

    Article  Google Scholar 

  • Anderson SP, von Blanckenburg F, White F (2005) Physical and chemical controls on the critical zone. Elements 3(5):315–319

    Article  Google Scholar 

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146:54–62

    Article  Google Scholar 

  • Aster RC, Borchers B, Thurber CH (2018) Parameter estimation and inverse problems. Elsevier, Amsterdam

    Google Scholar 

  • Astic T, Heagy LJ, Oldenburg DW (2020) Petrophysically and geologically guided multi-physics inversion using a dynamic Gaussian mixture model. Geophys J Int 224:40–68

    Article  Google Scholar 

  • Athens N, Caers J (2021) Stochastic inversion of gravity data accounting for structural uncertainty. Math Geosci 54:413–436

    Article  Google Scholar 

  • Ayani M, Grana D, Liu M (2020) Stochastic inversion method of time-lapse controlled source electromagnetic data for CO2 plume monitoring. Int J Greenh Gas Control 100:103098

    Article  Google Scholar 

  • Azevedo L, Soares A (2017) Geostatistical methods for reservoir geophysics. Springer, Berlin

    Book  Google Scholar 

  • Bachrach R (2006) Joint estimation of porosity and saturation using stochastic rock-physics modeling. Geophysics 71(5):O53–O63

    Article  Google Scholar 

  • Berryman JG (1995) Mixture theories for rock properties. In: Ahrens TJ (ed) Rock physics and phase relations: a handbook of physical constants, vol 3. Wiley, pp 205–228

    Google Scholar 

  • Blatter D, Key K, Ray A, Gustafson C, Evans R (2019) Bayesian joint inversion of controlled source electromagnetic and magnetotelluric data to image freshwater aquifer offshore New Jersey. Geophys J Int 218(3):1822–1837

    Article  Google Scholar 

  • Brantley SL, Goldhaber MB, Ragnarsdottir KV (2007) Crossing disciplines and scales to understand the critical zone. Elements 3(5):307–314

    Article  Google Scholar 

  • Brunetti C, Linde N (2018) Impact of petrophysical uncertainty on Bayesian hydrogeophysical inversion and model selection. Adv Water Resour 111:346–359

    Article  Google Scholar 

  • Buland A, Kolbjørnsen O (2012) Bayesian inversion of CSEM and magnetotelluric data. Geophysics 77(1):E33–E42

    Article  Google Scholar 

  • Buland A, Omre H (2003) Bayesian linearized AVO inversion. Geophysics 68(1):185–198

    Article  Google Scholar 

  • Caers J (2011) Modeling uncertainty in the earth sciences. Wiley, Hoboken

    Book  Google Scholar 

  • Callahan RP, Riebe CS, Pasquet S, Ferrier KL, Grana D, Sklar LS, Taylor NJ, Flinchum BA, Hayes JL, Carr BJ, Hartsough PC, O’Geen AT, Holbrook WS (2020) Subsurface weathering revealed in hillslope-integrated porosity distributions. Geophys Res Lett 47(15):e2020GL088322

    Article  Google Scholar 

  • Chiles JP, Delfiner P (2009) Geostatistics: modeling spatial uncertainty. Wiley, Hoboken

    Google Scholar 

  • Dawson TE, Hahm WJ, Crutchfield-Peters K (2020) Digging deeper: what the critical zone perspective adds to the study of plant ecophysiology. New Phytol 226(3):666–671

    Article  Google Scholar 

  • Doetsch J, Linde N, Coscia I, Greenhalgh SA, Green AG (2010) Zonation for 3D aquifer characterization based on joint inversions of multimethod crosshole geophysical data. Geophysics 75(6):G53–G64

    Article  Google Scholar 

  • Doyen P (2007) Seismic reservoir characterization. EAGE, Dubai

    Google Scholar 

  • Dubreuil-Boisclair C, Gloaguen E, Marcotte D, Giroux B (2011) Heterogeneous aquifer characterization from ground-penetrating radar tomography and borehole hydrogeophysical data using nonlinear Bayesian simulations. Geophysics 76(4):J13–J25

    Article  Google Scholar 

  • Dvorkin J, Nur A (1996) Elasticity of high-porosity sandstones: theory for two North Sea data sets. Geophysics 61(5):1363–1370

    Article  Google Scholar 

  • Dvorkin J, Gutierrez MA, Grana D (2014) Seismic reflections of rock properties. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Eidsvik J, Avseth P, Omre H, Mukerji T, Mavko G (2004) Stochastic reservoir characterization using prestack seismic data. Geophysics 69:978–993

    Article  Google Scholar 

  • Emerick AA, Reynolds AC (2013) Ensemble smoother with multiple data assimilation. Comput Geosci 55:3–15

    Article  Google Scholar 

  • Evensen G (2009) Data assimilation: the ensemble Kalman filter. Springer, Berlin

    Book  Google Scholar 

  • Flinchum BA, Holbrook WS, Grana D, Parsekian AD, Carr BJ, Hayes JL, Jiao J (2018a) Estimating the water holding capacity of the critical zone using near-surface geophysics. Hydrol Process 32(22):3308–3326

    Article  Google Scholar 

  • Flinchum BA, Holbrook WS, Rempe D, Moon S, Riebe CS, Carr BJ, Hayes JL, St. Clair J, Peters MP (2018b) Critical zone structure under a granite ridge inferred from drilling and three-dimensional seismic refraction data. J Geophys Res Earth Surf 123(6):1317–1343

    Article  Google Scholar 

  • Gal D, Dvorkin J, Nur A (1998) A physical model for porosity reduction in sandstones. Geophysics 63(2):454–459

    Article  Google Scholar 

  • Gallardo LA, Meju MA (2003) Characterization of heterogeneous near-surface materials by joint 2D inversion of DC resistivity and seismic data. Geophys Res Lett 30:1658

    Article  Google Scholar 

  • Gloaguen E, Giroux B, Marcotte D, Dimitrakopoulos R (2007) Pseudo-full-waveform inversion of borehole GPR data using stochastic tomography. Geophysics 72(5):J43–J51

    Article  Google Scholar 

  • Goodwin H, Aker E, Røe P (2021) Stochastic modeling of subseismic faults conditioned on displacement and orientation maps. Math Geosci 54:207–224

    Article  Google Scholar 

  • Grana D (2016) Bayesian linearized rock-physics inversion. Geophysics 81(6):D625–D641

    Article  Google Scholar 

  • Grana D, Della Rossa E (2010) Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion. Geophysics 75(3):O21–O37

    Article  Google Scholar 

  • Grana D, Fjeldstad T, Omre H (2017) Bayesian Gaussian mixture linear inversion for geophysical inverse problems. Math Geosci 49(4):493–515

    Article  Google Scholar 

  • Grana D, Liu M, Ayani M (2020) Prediction of CO2 saturation spatial distribution using geostatistical inversion of time-lapse geophysical data. IEEE Trans Geosci Remote Sens 59(5):3846–3856

    Article  Google Scholar 

  • Grana D, Mukerji T, Doyen P (2021) Seismic reservoir modelling. Wiley, Hoboken

    Book  Google Scholar 

  • Gu X, Mavko G, Ma L, Oakley D, Accardo N, Carr BJ, Nyblade AA, Brantley SL (2020) Seismic refraction tracks porosity generation and possible CO2 production at depth under a headwater catchment. Proc Natl Acad Sci 117(32):18991–18997

    Article  Google Scholar 

  • Hachmöller B, Paasche H (2013) Integration of surface-based tomographic models for zonation and multimodel guided extrapolation of sparsely known petrophysical parameters. Geophysics 78(4):EN43–EN53

    Article  Google Scholar 

  • Hahm WJ, Rempe DM, Dralle DN, Dawson TE, Lovill SM, Bryk AB, Bish DL, Schieber J, Dietrich WE (2019) Lithologically controlled subsurface critical zone thickness and water storage capacity determine regional plant community composition. Water Resour Res 55(4):3028–3055

    Article  Google Scholar 

  • Hansen TM, Cordua KS, Mosegaard K (2012) Inverse problems with non-trivial priors: efficient solution through sequential Gibbs sampling. Comput Geosci 16(3):593–611

    Article  Google Scholar 

  • Harman CJ, Cosans CL (2019) A low-dimensional model of bedrock weathering and lateral flow co-evolution in hillslopes: 2. Controls on weathering and permeability profiles, drainage hydraulics, and solute export pathways. Hydrol Process 33(8):1168–1190

    Article  Google Scholar 

  • Hayes JL, Riebe CS, Holbrook WS, Flinchum BA, Hartsough PC (2019) Porosity production in weathered rock: where volumetric strain dominates over chemical mass loss. Sci Adv 5(9):eaao0834

    Article  Google Scholar 

  • Hermans T, Irving J (2017) Facies discrimination with electrical resistivity tomography using a probabilistic methodology: effect of sensitivity and regularization. Near Surf Geophys 15:13–25

    Article  Google Scholar 

  • Holbrook WS, Riebe CS, Elwaseif ML, Hayes JL, Basler-Reeder KL, Harry DL, Malazian K, Dosseto AC, Hartsough P, Hopmans J (2014) Geophysical constraints on deep weathering and water storage potential in the Southern Sierra critical zone Observatory. Earth Surf Process Landf 39(3):366–380

    Article  Google Scholar 

  • Huang MH, Hudson-Rasmussen B, Burdick S, Lekic V, Nelson MD, Fauria KE, Schmerr N (2021) Bayesian seismic refraction inversion for critical zone science and near-surface applications. Geochem Geophys Geosyst 22(5):e2020GC009172

    Article  Google Scholar 

  • Hunziker J, Laloy E, Linde N (2019) Bayesian full-waveform tomography with application to crosshole ground penetrating radar data. Geophys J Int 218(2):913–931

    Article  Google Scholar 

  • Isaaks EH, Srivastava RM (1989) Applied geostatistics. Oxford University Press, Oxford

    Google Scholar 

  • Kitanidis PK (1997) Introduction to geostatistics: applications in hydrogeology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Knight R, Dvorkin J, Nur A (1998) Acoustic signatures of partial saturation. Geophysics 63(1):132–138

    Article  Google Scholar 

  • Knight R, Endres A (2005) An introduction to rock physics principles for near-surface geophysics. In: Butler DK (ed) Near-surface geophysics. Society of Exploration Geophysicists, pp 31–70

    Chapter  Google Scholar 

  • Kotikian M, Parsekian AD, Paige G, Carey A (2019) Observing heterogeneous unsaturated flow at the Hillslope scale using time-lapse electrical resistivity tomography. Vadose Zone J 18(1):1–16

    Article  Google Scholar 

  • Larsen AL, Ulvmoen M, Omre H, Buland A (2006) Bayesian lithology/fluid prediction and simulation on the basis of a Markov-chain prior model. Geophysics 71(5):R69–R78

    Article  Google Scholar 

  • Linde N, Doetsch J (2016) Joint inversion in hydrogeophysics and near-surface geophysics. Integr Imaging Earth Theory Appl 218:119

    Google Scholar 

  • Liu M, Grana D (2020) Petrophysical characterization of deep saline aquifers for CO2 storage using ensemble smoother and deep convolutional autoencoder. Adv Water Resour 142:103634

    Article  Google Scholar 

  • Loe MK, Grana D, Tjelmeland H (2021) Geophysics-based fluid-facies predictions using ensemble updating of binary state vectors. Math Geosci 53(3):325–347

    Article  Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J (2020) The rock physics handbook. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • McCormick EL, Dralle DN, Hahm WJ, Tune AK, Schmidt LM, Chadwick KD, Rempe DM (2021) Widespread woody plant use of water stored in bedrock. Nature 597(7875):225–229

    Article  Google Scholar 

  • Meju MA, Gallardo LA, Mohamed AK (2003) Evidence for correlation of electrical resistivity and seismic velocity in heterogeneous near-surface materials. Geophys Res Lett 30:1373

    Article  Google Scholar 

  • Menke W (2018) Geophysical data analysis: discrete inverse theory. Academic Press, Cambridge

    Google Scholar 

  • Miltenberger A, Mukerji T, Hariharan J, Passalacqua P, Nesvold E (2021) A graph-theoretic Monte Carlo framework for comparing delta surface dynamics and subsurface structure in numerical models and physical experiments. Math Geosci 54:317–344

    Article  Google Scholar 

  • Minsley BJ (2011) A trans-dimensional Bayesian Markov chain Monte Carlo algorithm for model assessment using frequency-domain electromagnetic data. Geophys J Int 187(1):252–272

    Article  Google Scholar 

  • Moysey S, Singha K, Knight R (2005) A framework for inferring field-scale rock physics relationships through numerical simulation. Geophys Res Lett 32(8):L08304

    Article  Google Scholar 

  • Nenna V, Herckenrath D, Knight R, Odlum N, McPhee D (2013) Application and evaluation of electromagnetic methods for imaging saltwater intrusion in coastal aquifers: Seaside Groundwater Basin, California. Geophysics 78(2):B77–B88

    Article  Google Scholar 

  • Nenna V, Pidlisecky A, Knight R (2011) Application of an extended Kalman filter approach to inversion of time-lapse electrical resistivity imaging data for monitoring recharge. Water Resour Res 47(1):W10525

    Google Scholar 

  • Parsekian AD, Grana D, Neves F, Pleasants MS, Seyfried M, Moravec BG, Chorover J, Moraes A, Smeltz N, Westenhoff JN, Kelleners T (2021) Hydrogeophysical comparison of hillslope critical zone architecture for different geologic substrates. Geophysics 86(3):1–84

    Google Scholar 

  • Parsekian AD, Singha K, Minsley BJ, Holbrook WS, Slater L (2015) Multiscale geophysical imaging of the critical zone. Rev Geophys 53:1–26

    Article  Google Scholar 

  • Posselt DJ, Bishop CH (2012) Nonlinear parameter estimation: comparison of an ensemble Kalman smoother with a Markov chain Monte Carlo algorithm. Mon Weather Rev 140(6):1957–1974

    Article  Google Scholar 

  • Rempe DM, Dietrich WE (2018) Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc Natl Acad Sci 115(11):2664–2669

    Article  Google Scholar 

  • Ray A, Key K (2012) Bayesian inversion of marine CSEM data with a trans-dimensional self parametrizing algorithm. Geophys J Int 191(3):1135–1151

    Google Scholar 

  • Redoloza F, Li L (2021) A comparison of extremal optimization, differential evolution and particle swarm optimization methods for well placement design in groundwater management. Math Geosci 53:711–735

    Article  Google Scholar 

  • Riebe CS, Hahm WJ, Brantley SL (2017) Controls on deep critical zone architecture: a historical review and four testable hypotheses. Earth Surf Proc Landf 42:128–156

    Article  Google Scholar 

  • Riebe CS, Callahan RP, Granke SBM, Carr BJ, Hayes JL, Schell MS, Sklar LS (2021) Anisovolumetric weathering in granitic saprolite controlled by climate and erosion rate. Geology 49(5):551–555

    Article  Google Scholar 

  • Robinson DA, Binley A, Crook N, Day-Lewis FD, Ferré T, Grauch V, Knight R, Knoll K, Lakshmi V, Miller R, Nyquist J (2008) Advancing process-based watershed hydrological research using near-surface geophysics: a vision for, and review of, electrical and magnetic geophysical methods. Hydrol Process 18:3604–3635

    Article  Google Scholar 

  • Scales J, Tenorio L (2001) Prior information and uncertainty in inverse problems. Geophysics 66:389–397

    Article  Google Scholar 

  • Simandoux P (1963) Dielectric measurements on porous media, application to the measurements of water saturation: study of behavior of argillaceous formations. Revue de L’institut Francais du Petrole 18(Supplementary Issue):193–215

    Google Scholar 

  • Singha K, Moysey S (2006) Accounting for spatially variable resolution in electrical resistivity tomography through field-scale rock-physics relations. Geophysics 71(4):A25–A28

    Article  Google Scholar 

  • Srivastava RM (1992) Reservoir characterization with probability field simulation. SPE 24753

  • St. Clair J, Moon S, Holbrook WS, Perron JT, Riebe CS, Martel SJ, Carr B, Harman C, Singha K, Richter DD (2015) Geophysical imaging reveals topographic stress control of bedrock weathering. Science 350(6260):534–538

    Article  Google Scholar 

  • Tarantola A, Valette B (1982) Inverse problems = quest for information. J Geophys 50:159–170

    Google Scholar 

  • Tarantola A (2005) Inverse problem theory. SIAM, Philadelphia

    Google Scholar 

  • Te Wu T (1966) The effect of inclusion shape on the elastic moduli of a two-phase material. Int J Solids Struct 2(1):1–8

    Article  Google Scholar 

  • Tveit S, Mannseth T, Park J, Sauvin G, Agersborg R (2020) Combining CSEM or gravity inversion with seismic AVO inversion, with application to monitoring of large-scale CO2 injection. Comput Geosci 24(3):1201–1220

    Article  Google Scholar 

  • Ulrych T, Sacchi M, Woodbury A (2001) A Bayes tour of inversion: a tutorial. Geophysics 66:55–69

    Article  Google Scholar 

  • White A, Moravec B, McIntosh J, Olshansky Y, Paras B, Sanchez RA, Ferré T, Meixner T, Chorover J (2019) Distinct stores and the routing of water in the deep critical zone of a snow-dominated volcanic catchment. Hydrol Earth Syst Sci 23:4661–4683

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science Foundation award “Collaborative Research: Network Cluster: Bedrock controls on the deep critical zone, landscapes, and ecosystems” (NSF-EAR 2012353, 2012227, 2012316, 2012357, and 2012408) and by the USGS/NIWR and State of Wyoming WWDC through the University of Wyoming Water Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Grana.

Additional information

In this article the affiliation details for authors were incorrectly given.

Appendix: Rock Physics Model

Appendix: Rock Physics Model

The elastic component of the rock physics model computes P-wave velocity properties from petrophysical properties of rocks and fluids. The mineral phase is assumed homogeneous and constant. The model variables are porosity and water saturation, and the model prediction is P-wave velocity. For a porous rock saturated with a mixture of two fluid components (water and air), the density \(\rho\) is computed according to Eq. (7) and the P-wave velocity according to Eq. (6).

For the saprolite, Dvorkin’s model (Dvorkin and Nur 1996) is adopted to compute P-wave velocity \(V_{{\text{P}}}\) as a function of the saturated rock elastic moduli, \(K_{{{\text{sat}}}}\) and \(G_{{{\text{sat}}}}\), by combining Hertz–Mindlin equations, modified Hashin–Shtrikman lower bounds, and Gassmann’s equations as

$$ K_{{{\text{sat}}}} (\phi ,S_{{\text{w}}} ) = \frac{{K_{{{\text{sol}}}}\left( {\alpha - \frac{4}{3}G_{{{\text{HM}}}} \beta \phi + \gamma } \right)}}{{\alpha + K_{{{\text{sol}}}} \beta \phi + \gamma }}, $$
(A1)

where

$$ \begin{aligned} \alpha & = K_{{{\text{fl}}}} \left( {S_{{\text{w}}} } \right)\left( {K_{{{\text{sol}}}} + \frac{4}{3}G_{{{\text{HM}}}} } \right)\left( {K_{{{\text{sol}}}} - K_{{{\text{HM}}}} } \right), \\ \beta & = \left( {K_{{{\text{sol}}}} - K_{{{\text{HM}}}} } \right)\left( {K_{{{\text{sol}}}} - K_{{{\text{fl}}}} \left( {S_{{\text{w}}} } \right)} \right), \\ \gamma & = K_{{{\text{sol}}}} \left( {K_{{{\text{HM}}}} + \frac{4}{3}G_{{{\text{HM}}}} } \right)\left( {K_{{{\text{sol}}}} - K_{{{\text{fl}}}} \left( {S_{{\text{w}}} } \right)} \right)\phi_{{\text{c}}} , \\ \end{aligned} $$
(A2)

and

$$ G_{{{\text{sat}}}} \left( {\phi } \right) = \frac{{\phi \left( {G_{{{\text{HM}}}} - G_{{{\text{sol}}}}} \right)\xi + \delta G_{{{\text{sol}}}} }}{{\phi \left( {G_{{{\text{sol}}}} - G_{{{\text{HM}}}} } \right) + \delta }}, $$
(A3)

where

$$ \begin{aligned} \xi & = \frac{1}{6}G_{{{\text{HM}}}} \frac{{9K_{{{\text{HM}}}} + 8G_{{{\text{HM}}}} }}{{K_{{{\text{HM}}}} + 2G_{{{\text{HM}}}} }}, \\ \delta & = \left( {\xi + G_{{{\text{HM}}}} } \right)\phi_{{\text{c}}} , \\ \end{aligned} $$
(A4)

with \(K_{{{\text{sol}}}}\) being the solid-phase bulk modulus, \(G_{{{\text{sol}}}}\) the solid-phase shear modulus, \(K_{{{\text{fl}}}}\) the fluid-phase bulk modulus, \(\phi_{{\text{c}}}\) the critical porosity, \(K_{{{\text{HM}}}}\) the Hertz–Mindlin bulk modulus, and \(G_{{{\text{HM}}}}\) the Hertz–Mindlin shear modulus (Dvorkin and Nur 1996). The Hertz–Mindlin elastic moduli depend on the solid-phase elastic moduli, the critical porosity, the coordination number, and the effective pressure. In the proposed approach, the solid-phase elastic moduli \(K_{{{\text{sol}}}}\) and \(G_{{{\text{sol}}}}\) are assumed to be constant and known, whereas in the general case they are computed using Voigt–Reuss–Hill averages. The fluid-phase bulk modulus \(K_{{{\text{fl}}}}\) is computed using the Reuss average for homogeneous mixtures and Voigt average for patchy mixtures.

For the bedrock, an inclusion model is adopted based on the self-consistent approximation model proposed in Berryman (1995) and Te Wu (1966), which provides the elastic moduli for a porous rock with a single inclusion type equal to the pore volume

$$ K_{{{\text{sat}}}} (\phi ,S_{{\text{w}}} )= K_{{{\text{sol}}}} + \phi \left( {K_{{{\text{fl}}}}(S_{{\text{w}}})- K_{{{\text{sol}}}} } \right)P, $$
(A5)
$$ G_{{{\text{sat}}}}(\phi) = G_{{{\text{sol}}}} - \phi G_{{{\text{sol}}}} Q, $$
(A6)

where \(P\) and \(Q\) are geometrical factors. The fluid-phase bulk modulus \(K_{{{\text{fl}}}}\) is computed using Reuss or Voigt mixing laws. The geometrical factors \(P\) and \(Q\) depend on the aspect ratio of the pores (Berryman 1995; Mavko et al. 2020; Grana et al. 2021).

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grana, D., Parsekian, A.D., Flinchum, B.A. et al. Geostatistical Rock Physics Inversion for Predicting the Spatial Distribution of Porosity and Saturation in the Critical Zone. Math Geosci 54, 1315–1345 (2022). https://doi.org/10.1007/s11004-022-10006-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-022-10006-0

Keywords