Skip to main content

Advertisement

Log in

Fractal Analysis of Karst Landscapes

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

Fractal analysis has, for some time, been used to evaluate the roughness of both natural and engineered surfaces. Since the introduction of fractal geometry, evidence of the universality of fractal forms in nature has increased, and many applications have been found for fractal analysis. The purpose of this work is to study the relationships between karst geological features and landscape roughness in order to extract information on karst landscape evolution and the interaction between lithological, geomorphological and tectonic processes and karst terrain complexity. As a means of achieving this, the fractal analysis of a high-relief karst system using a high-resolution digital elevation model is presented. The local fractal dimension of the topography is calculated within a moving window from the variogram of terrain profiles. It has been found that the fractal dimension is not related to slope, and that a fractal dimension of 2.3, suggested as an upper limit on surface roughness based on arguments of surface fragility, is also a practical limit for fractal dimensions of karst terrains. The methodology is applied to the high-relief Mediterranean karst of the Sierra de las Nieves in Southern Spain where two different areas of karst evolution and development have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Arakawa K, Krotkov E (1996) Fractal modeling of natural terrain: analysis and surface reconstruction with range data. Graph Models Image Process 58:413–436

    Google Scholar 

  • Burrough PA (1981) Fractal dimensions of landscapes and other environmental data. Nature 294:240–242

    Google Scholar 

  • Carr JR, Benzer WB (1991) On the practice of estimating fractal dimension. Math Geol 23:945–958

    Google Scholar 

  • Chase CG (1992) Fluvial landsculpting and the fractal dimension of topography. Geomorphology 5:39–57

    Google Scholar 

  • Chaudhuri BB, Sarkar N (1995) Texture segmentation using fractal dimension. IEEE Trans Pattern Anal Mach Intell 17:72–77

    Google Scholar 

  • Clarke KC (1986) Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method. Comput Geosci 12:713–722

    Google Scholar 

  • Conci A, Aquino FR (2005) Fractal coding based on image local fractal dimension. Comput Appl Math 24:83–98

    Google Scholar 

  • Datcu M, Luca D, Seidel K (1996) Wavelet-based digital elevation model analysis. In: Proceedings of 16th EARSeL (European Association of remote sensing laboratories symposium), Rotterdam, Brookfield, pp 283–290

  • Dellepiane S, Giusto DD, Serpico SB, Vernazza G (1991) SAR image recognition by integration of intensity and textural information. Int J Remote Sens 12:1915–1932

    Google Scholar 

  • Dubuc B, Zucker SW, Tricot C, Quiniou JF, Wehbi D (1989) Evaluating the fractal dimension of surfaces. Proc R Soc Lond A 425:113–127

    Google Scholar 

  • Franceschetti G, Iodice A, Migliaccio M, Riccio D (1999) Scattering from natural rough surfaces modeled by fractional Brownian motion two-dimensional processes. IEEE Trans Antennas Propag 47:1405–1415

    Google Scholar 

  • Gagnon J-S, Lovejoy S, Schertzer D (2006) Multifractal earth topography. Nonlinear Process Geophys 13:541–570

    Google Scholar 

  • Gallant JC, Moore ID, Hutchinson MF, Gessler P (1994) Estimating fractal dimension of profiles: a comparison of methods. Math Geol 26:455–481

    Google Scholar 

  • Gneiting T, Ševčíková H, Percival DB (2012) Estimators of fractal dimension: assessing the roughness of time series and spatial data. Stat Sci 27:247–277

    Google Scholar 

  • Herzfeld UC, Kim II, Orcutt A (1995) Is the ocean floor a fractal? Math Geol 27(3):421–462

    Google Scholar 

  • Imre AR (2006) Artificial fractal dimension obtained by using perimeter–area relationship on digitalized images. Appl Math Comput 173:443–449

    Google Scholar 

  • Imre AR (2007) Systematic error in the determination of perimeter and area of off-lattice digitalized images. Int J Remote Sens 28:5071–5077

    Google Scholar 

  • Kanevski M, Pereira MG (2017) Local fractality: the case of forest fires in Portugal. Phys A 479:400–410

    Google Scholar 

  • Klinkenberg B (1992) Fractals and morphometric measures: is there a relationship? Geomorphology 5:5–20

    Google Scholar 

  • Klinkenberg B (1994) A review of methods used to determine the fractal dimension of linear features. Math Geol 26:23–46

    Google Scholar 

  • Klinkenberg B, Goodchild MF (1992) The fractal properties of topography: a comparison of methods. Earth Surf Proc Land 17:217–234

    Google Scholar 

  • Kolahi-Azar AP, Golriz S (2018) Multifractal topography: a tool to measure tectonic complexity in the Zagros Mountain range. Math Geosci 50(4):431–445

    Google Scholar 

  • Kowalzyk A, Szlachta A, Hanus R (2012) Standard uncertainty determination of the mean for correlated data using conditional averaging. Metrol Meas Syst XIX(4):787–796

    Google Scholar 

  • Kusumayudha SB, Zen MT, Notosiswoyo S, Gautama RS (2000) Fractal analysis of the Oyo River, cave systems, and topography of the Gunungsewu karst area, central Java, Indonesia. Hydrogeol J 8:271–278

    Google Scholar 

  • Liucci L, Melelli L (2017) The fractal properties of topography as controlled by the interactions of tectonic, lithological and geomorphological processes. Earth Surf Proc Land 42:2585–2598

    Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. Freeman, San Francisco, WH

    Google Scholar 

  • Mark D, Aronson P (1984) Scale-dependent fractal dimensions of topographic surfaces: an empirical investigation, with applications in geomorphology and computer mapping. Math Geol 16:671–683

    Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266

    Google Scholar 

  • Milne BT (1988) Measuring the fractal geometry of landscapes. Appl Math Comput 27:67–79

    Google Scholar 

  • Novianto S, Suzuki Y, Maeda J (2003) Near optimum estimation of local fractal dimension for image segmentation. Pattern Recogn Lett 24:365–374

    Google Scholar 

  • Olea R, Pardo-Igúzquiza E (2011) Generalized bootstrap method for assessment of uncertainty in semivariogram inference. Math Geosci 43:203–228

    Google Scholar 

  • Ouchi S, Matsushita M (1992) Measurement of self-affinity on surfaces as a trial application of fractal geometry to landform analysis. Geomorphology 5:115–130

    Google Scholar 

  • Pardo-Igúzquiza E, Dowd PA (2001a) Variance-covariance matrix of the experimental variogram: assessing variogram uncertainty. Math Geol 33:397–419

    Google Scholar 

  • Pardo-Igúzquiza E, Dowd PA (2001b) VARIOG2D: a computer program for the inference of the variogram and its uncertainty. Comput Geosci 27:549–561

    Google Scholar 

  • Pardo-Igúzquiza E, Olea R (2012) VARBOOT: a spatial bootstrap program for semivariogram uncertainty assessment. Comput Geosci 41:188–198

    Google Scholar 

  • Pardo-Igúzquiza E, Durán-Valsero JJ, Dowd PA, Guardiola-Albert C, Liñan-Baena C, Robledo-Ardila PA (2012) Estimation of spatio-temporal recharge of aquifers in mountainous karst terrains: application to Sierra de las Nieves (Spain). J Hydrol 470–471:124–137

    Google Scholar 

  • Pardo-Igúzquiza E, Durán JJ, Dowd PA (2013) Automatic detection and delineation of karst terrain depressions and its application in geomorphological mapping and morphometric analysis. Acta Carsologica 42:17–24

    Google Scholar 

  • Pardo-Igúzquiza E, Durán JJ, Luque-Espinar JA, Martos-Rosillo S (2014) Análisis del relieve kárstico mediante el modelo digital de elevaciones. Aplicaciones a la Sierra de las Nieves (provincia de Málaga). Boletín Geológico y Minero 125:381–389

    Google Scholar 

  • Pardo-Igúzquiza E, Durán JJ, Luque-Espinar JA, Robledo-Ardila PA, Martos-Rosillo S, Guardiola-Albert C, Pedrera A (2015) Karst massif susceptibility from rock matrix, fracture and conduit porosities: a case study of the Sierra de las Nieves (Málaga, Spain). Environ Earth Sci 74:7583–7592

    Google Scholar 

  • Pardo-Igúzquiza E, Dowd PA, Ruiz-Constán A, Martos-Rosillo S, Luque-Espinar JA, Rodríguez-Galiano V, Pedrera A (2018) Epikarst mapping by remote sensing. CATENA 165:1–11

    Google Scholar 

  • Pentland AP (1984) Fractal based description of natural scenes. IEEE Trans Pattern Anal Mach Intell 6:661–674

    Google Scholar 

  • Persson BNJ (2014) On the fractal dimension of rough surfaces. Tribol Lett 54:99–106

    Google Scholar 

  • Sarkar N, Chaudhuri BB (1994) An efficient differential box-counting approach to compute fractal dimension of image. IEEE Trans Syst Man Cybern 24:115–120

    Google Scholar 

  • Tate NJ (1998) Maximum entropy spectral analysis for the estimation of fractals in topography. Earth Surf Proc Land 23:1197–1217

    Google Scholar 

  • Taud H, Parrot J-F (2005) Measurement of DEM roughness using the local fractal dimension. Géomorphol Relief Processus Environ 11:327–338

    Google Scholar 

  • Voss RF (1985) Random fractal forgeries. In: Earnshaw RA (ed) Fundamental algorithms for computer graphics: NATO ASI series, vol 17. Springer, Berlin, pp 805–835

    Google Scholar 

  • Wen R, Sinding-Larsen R (1997) Uncertainty in fractal dimension estimated from power spectra and variograms. Math Geol 29:727–753

    Google Scholar 

  • Williams SC (2013) The overlapping variation method algorithm. Ph.D. Thesis, San Diego State University

  • Wilson TH, Dominic J (1998) Fractal interrelationships between topography and structure. Earth Surf Proc Land 23:509–525

    Google Scholar 

  • Xu T, Moore ID, Gallant JC (1993) Fractals, fractal dimensions and landscapes—a review. Geomorphology 8:245–262

    Google Scholar 

Download references

Acknowledgements

This work was supported by research project CGL2015-71510-R of the Ministerio de Economía, Industria y Competitividad of Spain. We thank two anonymous reviewers and the journal’s Editor-in-Chief for their constructive comments that have significantly helped to improve the final version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eulogio Pardo-Igúzquiza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pardo-Igúzquiza, E., Dowd, P.A. Fractal Analysis of Karst Landscapes. Math Geosci 52, 543–563 (2020). https://doi.org/10.1007/s11004-019-09803-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-019-09803-x

Keywords

Navigation