Local versus Regional Soil Screening Levels to Identify Potentially Polluted Areas

Abstract

Soil screening levels (SSLs) are reference threshold values required by environmental laws, established based on soil geochemical background data from often-extensive sampling areas. Such areas are often inappropriate for interpreting the true risk of pollution in small areas, since they overlook local factors (e.g., geology, industry, and traffic), which are unfeasible to encompass in large-scale samplings. To solve this issue, the calculation of local SSLs is proposed herein, performed on a major scale closer to the area of interest. To exemplify this proposal, a soil sampling campaign was performed in the Municipality of Langreo, one of the most industrialized areas in the Principality of Asturias (northwestern Spain). Sampling allowed the measurement of local soil screening levels for several inorganic contaminants. Afterwards, a soil pollution index was calculated, referred to both regional and local thresholds, to assess the degree of contamination. Both pollution indicators were subjected to a methodology based on a Bayesian network analysis, followed by a stochastic sequential Gaussian simulation approach. The methodologies used showed differences in the identification of potentially polluted areas depending on the soil screening levels (regional or local) used. It was concluded that, in urban/industrial cores, local soil screening levels facilitate the identification of polluted areas and also reduce the uncertainty associated with sampling density and diffuse contamination. Thus, use of local levels circumvents false-positive areas that would be classified as polluted were regional soil screening levels to be used.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Alameddine I, Kenney MA, Gosnell RJ, Reckhow KH (2010) Robust multivariate outlier detection methods for environmental data. J Environ Eng 136:1299–1304. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000271

    Article  Google Scholar 

  2. Albuquerque MTD, Gerassis S, Sierra C et al (2017) Developing a new Bayesian Risk Index for risk evaluation of soil contamination. Sci Total Environ 603–604:167–177. https://doi.org/10.1016/j.scitotenv.2017.06.068

    Article  Google Scholar 

  3. Alekseenko VA, Bech J, Alekseenko AV et al (2018) Environmental impact of disposal of coal mining wastes on soils and plants in Rostov Oblast, Russia. J Geochem Explor 184:261–270. https://doi.org/10.1016/j.gexplo.2017.06.003

    Article  Google Scholar 

  4. Aller J, Gallastegui J (1995) Analysis of kilometric-scale superposed folding in the Central Coal Basin (Cantabrian zone, NW Spain). J Struct Geol 17:961–969. https://doi.org/10.1016/0191-8141(94)00115-g

    Article  Google Scholar 

  5. Antunes IMHR, Albuquerque MTD (2013) Using indicator kriging for the evaluation of arsenic potential contamination in an abandoned mining area (Portugal). Sci Total Environ 442:545–552. https://doi.org/10.1016/j.scitotenv.2012.10.010

    Article  Google Scholar 

  6. Araújo PRM, Biondi CM, da Silva FBV et al (2018) Geochemical soil anomalies: assessment of risk to human health and implications for environmental monitoring. J Geochem Explor 190:325–335. https://doi.org/10.1016/j.gexplo.2018.03.016

    Article  Google Scholar 

  7. Beguin J, Fuglstad G-A, Mansuy N, Paré D (2017) Predicting soil properties in the Canadian boreal forest with limited data: comparison of spatial and non-spatial statistical approaches. Geoderma 306:195–205. https://doi.org/10.1016/j.geoderma.2017.06.016

    Article  Google Scholar 

  8. Benavoli A, Corani G, Demsar J, Zaffalon M (2016) Time for a change: a tutorial for comparing multiple classifiers through Bayesian analysis. J Mach Learn Res

  9. Boente C, Matanzas N, García-González N et al (2017) Trace elements of concern affecting urban agriculture in industrialized areas: a multivariate approach. Chemosphere 183:546–556. https://doi.org/10.1016/j.chemosphere.2017.05.129

    Article  Google Scholar 

  10. Boente C, Albuquerque MTD, Fernández-Braña A et al (2018) Combining raw and compositional data to determine the spatial patterns of potentially toxic elements in soils. Sci Total Environ 631–632:1117–1126. https://doi.org/10.1016/j.scitotenv.2018.03.048

    Article  Google Scholar 

  11. Cai C, Xiong B, Zhang Y et al (2015) Critical comparison of soil pollution indices for assessing contamination with toxic metals. Water Air Soil Pollut 226:352. https://doi.org/10.1007/s11270-015-2620-2

    Article  Google Scholar 

  12. Conrady S, Jouffe L (2013) Introduction to Bayesian Networks & BayesiaLab. BayesiaLab 30

  13. Cracknell MJ, Reading AM (2014) Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput Geosci 63:22–33. https://doi.org/10.1016/j.cageo.2013.10.008

    Article  Google Scholar 

  14. Demyanov V, Arnold D, Rojas T, Christie M (2018) Uncertainty quantification in reservoir prediction: part 2—handling uncertainty in the geological scenario. Math Geosci. https://doi.org/10.1007/s11004-018-9755-9

    Article  Google Scholar 

  15. Dung TTT, Cappuyns V, Swennen R, Phung NK (2013) From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Rev Environ Sci Biotechnol 12:335–353

    Article  Google Scholar 

  16. Fernández S, Cotos-Yáñez T, Roca-Pardiñas J, Ordóñez C (2018) Geographically weighted principal components analysis to assess diffuse pollution sources of soil heavy metal: application to rough mountain areas in Northwest Spain. Geoderma 311:120–129. https://doi.org/10.1016/j.geoderma.2016.10.012

    Article  Google Scholar 

  17. Gallego JR, Rodríguez-Valdés E, Esquinas N et al (2016) Insights into a 20-ha multi-contaminated brownfield megasite: an environmental forensics approach. Sci Total Environ 563–564:683–692. https://doi.org/10.1016/j.scitotenv.2015.09.153

    Article  Google Scholar 

  18. Garrett RG (2009) Relative spatial soil geochemical variability along two transects across the United States and Canada. Appl Geochem 24:1405–1415. https://doi.org/10.1016/j.apgeochem.2009.04.011

    Article  Google Scholar 

  19. Ghahramani Z (2015) Probabilistic machine learning and artificial intelligence. Nature 521:452–459

    Article  Google Scholar 

  20. Goovaerts P (1997) Geostatistics for natural resources evaluation. Applied geostatistics. Oxford Univ Press, New York, p 496

    Google Scholar 

  21. Guagliardi I, Cicchella D, De Rosa R et al (2018) Geochemical sources of vanadium in soils: evidences in a southern Italy area. J Geochem Explor 184:358–364. https://doi.org/10.1016/j.gexplo.2016.11.017

    Article  Google Scholar 

  22. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  Google Scholar 

  23. Jordan MI, Mitchell TM (2015) Machine learning: trends, perspectives, and prospects. Science (80-) 349:255–260. https://doi.org/10.1126/science.aaa8415

    Article  Google Scholar 

  24. Journel A, Huijbregts C (1978) Mining geostatistics. Academic, San Diego

    Google Scholar 

  25. Kicińska A (2016) Health risk to children exposed to Zn, Pb, and Fe in selected urban parks of the Silesian agglomeration. Hum Ecol Risk Assess Int J 22:1687–1695. https://doi.org/10.1080/10807039.2016.1218271

    Article  Google Scholar 

  26. Kicińska A (2019) Chemical and mineral composition of fly ashes from home furnaces, and health and environmental risk related to their presence in the environment. Chemosphere 215:574–585. https://doi.org/10.1016/j.chemosphere.2018.10.061

    Article  Google Scholar 

  27. Kicińska A, Bożęcki P (2018) Metals and mineral phases of dusts collected in different urban parks of Krakow and their impact on the health of city residents. Environ Geochem Health 40:473–488. https://doi.org/10.1007/s10653-017-9934-5

    Article  Google Scholar 

  28. Liénard A, Brostaux Y, Colinet G (2014) Soil contamination near a former Zn–Pb ore-treatment plant: evaluation of deterministic factors and spatial structures at the landscape scale. J Geochem Explor 147:107–116. https://doi.org/10.1016/j.gexplo.2014.07.014

    Article  Google Scholar 

  29. Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266. https://doi.org/10.2113/gsecongeo.58.8.1246

    Article  Google Scholar 

  30. Matheron G (1971) The theory of regionalized variables and its applications. In: Les Cahiers du Centre de Morphologie Mathématique, no. 5. Ecole des Mines de Paris

  31. McIlwaine R, Doherty R, Cox SF, Cave M (2016) The relationship between historical development and potentially toxic element concentrations in urban soils. Environ Pollut 220:1036–1049. https://doi.org/10.1016/j.envpol.2016.11.040

    Article  Google Scholar 

  32. McKinley JM, Hron K, Grunsky EC et al (2016) The single component geochemical map: fact or fiction? J Geochem Explor 162:16–28. https://doi.org/10.1016/j.gexplo.2015.12.005

    Article  Google Scholar 

  33. Meeker WQ, Hahn GJ, Escobar LA (2017) Statistical intervals. Wiley, Hoboken

    Google Scholar 

  34. Moreno-Jiménez E, García-Gómez C, Oropesa AL et al (2011) Screening risk assessment tools for assessing the environmental impact in an abandoned pyritic mine in Spain. Sci Total Environ 409:692–703. https://doi.org/10.1016/j.scitotenv.2010.10.056

    Article  Google Scholar 

  35. Naghibi SA, Pourghasemi HR, Dixon B (2016) GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ Monit Assess 188:1–27. https://doi.org/10.1007/s10661-015-5049-6

    Article  Google Scholar 

  36. Nussbaumer R, Mariethoz G, Gloaguen E, Holliger K (2018) Which path to choose in sequential Gaussian simulation. Math Geosci 50:97–120. https://doi.org/10.1007/s11004-017-9699-5

    Article  Google Scholar 

  37. Oprea M (2018) A knowledge modelling framework for intelligent environmental decision support systems and its application to some environmental problems. Environ Model Softw. https://doi.org/10.1016/j.envsoft.2018.09.001

    Article  Google Scholar 

  38. Pawlowsky-Glahn V, Egozcue JJ (2006) Compositional data and their analysis: an introduction. Geol Soc Lond Spec Publ 264:1–10. https://doi.org/10.1144/GSL.SP.2006.264.01.01

    Article  Google Scholar 

  39. Pereira MJ, Soares A (2018) Geostatistics for environmental applications. In: Mathematical geosciences, pp 123–125

  40. Pham BT, Tien Bui D, Prakash I, Dholakia MB (2017) Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. CATENA 149:52–63. https://doi.org/10.1016/j.catena.2016.09.007

    Article  Google Scholar 

  41. Regan HM, Sample BE, Ferson S (2002) Comparison of deterministic and probabilistic calculation of ecological soil screening levels. Environ Toxicol Chem 21:882–890. https://doi.org/10.1897/1551-5028(2002)021%3c0882:CODAPC%3e2.0.CO;2

    Article  Google Scholar 

  42. Roca N, Pazos MS, Bech J (2012) Background levels of potentially toxic elements in soils: a case study in Catamarca (a semiarid region in Argentina). CATENA 92:55–66. https://doi.org/10.1016/j.catena.2011.11.009

    Article  Google Scholar 

  43. Russell S, Norvig P (2010) Artificial intelligence - a modern approach, 3rd edn. Prentice Hall, London. ISBN-10:0136042597

    Google Scholar 

  44. Soares A, Nunes R, Azevedo L (2017) Integration of uncertain data in geostatistical modelling. Math Geosci 49:253–273. https://doi.org/10.1007/s11004-016-9667-5

    Article  Google Scholar 

  45. USEPA (1996) Soil screening guidance: user’s guide, 2nd edn. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  46. USEPA (2002) Supplemental guidance for developing soil screening. US Environ Prot Agency 106

  47. Verron S, Li J, Tiplica T (2010) Fault detection and isolation of faults in a multivariate process with Bayesian network. J Process Control 20:902–911. https://doi.org/10.1016/j.jprocont.2010.06.001

    Article  Google Scholar 

  48. Ye C, Li S, Zhang Y et al (2013) Assessing heavy metal pollution in the water level fluctuation zone of China’s Three Gorges Reservoir using geochemical and soil microbial approaches. Environ Monit Assess 185:231–240. https://doi.org/10.1007/s10661-012-2547-7

    Article  Google Scholar 

  49. Zissimos AM, Cohen DR, Christoforou IC (2018) Land use influences on soil geochemistry in Lefkosia (Nicosia) Cyprus. J Geochem Explor 187:6–20. https://doi.org/10.1016/j.gexplo.2017.03.005

    Article  Google Scholar 

  50. Zuo X, Hua H, Dong Z, Hao C (2017) Environmental performance index at the provincial level for China 2006–2011. Ecol Indic 75:48–56. https://doi.org/10.1016/j.ecolind.2016.12.016

    Article  Google Scholar 

Download references

Acknowledgements

Carlos Boente obtained a grant (FPU014/02215) from the Formación del Profesorado Universitario program, financed by the Ministerio de E.C.D. de España. The authors thank Alicia Fernández-Braña for her support during the sampling campaign.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Boente.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boente, C., Gerassis, S., Albuquerque, M.T.D. et al. Local versus Regional Soil Screening Levels to Identify Potentially Polluted Areas. Math Geosci 52, 381–396 (2020). https://doi.org/10.1007/s11004-019-09792-x

Download citation

Keywords

  • Soil pollution
  • Potentially toxic elements
  • Soil screening levels
  • Geostatistics
  • Machine learning