Mathematical Geosciences

, Volume 51, Issue 3, pp 295–317 | Cite as

Construction of Deep Thermal Models Based on Integrated Thermal Properties Used for Geothermal Risk Management

  • Hejuan LiuEmail author
  • Mather Nasr
Special Issue


The development of deep geothermal energy may be at risk from the economic point of view if the estimated deep thermal field is far from its real state. The strong heterogeneity of geological units makes it challenging to perform a reliable estimation on the construction of the deep thermal field over a large region. Additionally, the thermal properties of rocks, such as thermal conductivity and the radiogenic element concentration, whether they are from laboratory measurements or inversed from well logs, may strongly control the deep thermal field at a local scale. In this paper, the thermal conductivities of rocks from the Trois-Rivières region in the Saint Lawrence Lowlands sedimentary basin in eastern Canada are obtained from two methods: (i) direct experimental measurement and (ii) indirect inversion method using well logs, including gamma ray, neutron porosity, density, and photoelectric absorption factor. The spatial distribution of subsurface temperature in the study area in the Trois-Rivières region is numerically investigated by considering four case studies that include different values (minimum, average, and maximum) of the thermal properties by applying the Underworld simulator. The results show that thermal properties play a large role in controlling the subsurface temperature distribution and heat flux. The temperature difference can reach 15 °C in the basement, caused by the difference in thermal properties in the Trois-Rivières region. The highest heat flux is found in the Trenton–Black River–Chazy groups, and the lowest heat flux is in the Potsdam group, which also has the highest thermal conductivity. Vertical heat flux does not change linearly with depth but is highly related to the thermal properties of specific geological formations. Furthermore, it does not have a positive correlation with the vertical temperature changes. This demonstrates that the assessment of the potential of deep geothermal energy depending merely on the surface heat flux may greatly overestimate or underestimate the geothermal capacity. Construction of the thermal models based on the integrated thermal properties from both the experimental measurement and well logs in this paper is useful in reducing the exploration risk associated with the utilization of deep geothermal energy.


Thermal conductivity Radiogenic heat production Well logs Equilibrium temperature Heat flux 



The authors acknowledge the support of the Natural Sciences and Engineering Research Council of Canada and IREQ/Hydro-Québec, the CAS Pioneer Hundred Talents Program in China and NSFC (no. 51809259). We are extremely grateful to Bernard Giroux and Karine Bédard at INRS-ETE for their great help in the guidance of the construction of the 3D geological model and the numerical simulation. We would also like to thank Steven Quenette and John Mansour for their guidance in using the Underworld software.


  1. Ammann MW, Walker AM, Stackhouse S, Wookey J, Forte AM, Brodholt JP, Dobson DP (2014) Variation of thermal conductivity and heat flux at the Earth’s core mantle boundary. Earth Planet Sci Lett 390:175–185. CrossRefGoogle Scholar
  2. ASTM International (2008) Standard test method for determination of thermal conductivity of soil and soft rock by thermal needle probe procedure. ASTM D5334-08. ASTM International, West ConshohockenGoogle Scholar
  3. Bachu S (1993) Basement heat flow in the Western Canada sedimentary basin. Tectonophysics 222:119–133. CrossRefGoogle Scholar
  4. Barbier E (2002) Geothermal energy technology and current status: an overview. Renew Sustain Energy Rev 6:3–65. CrossRefGoogle Scholar
  5. Batir JF, Blackwell DD, Richards MC (2016) Heat flow and temperature–depth curves throughout Alaska: finding regions for future geothermal exploration. J Geophys Eng 13:366–378. CrossRefGoogle Scholar
  6. Beardsmore GR, Cull JP (2001) Crustal heat flow: a guide to measurement and modelling. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  7. Bédard K, Malo M, Comeau F-A (2013) CO2 geological storage in the Province of Québec, Canada: capacity evaluation of the St. Lawrence Lowlands basin. Energy Procedia 37:5093–5100. CrossRefGoogle Scholar
  8. Bédard K, Comeau F-A, Millet E, Raymond J, Malo M, Gloaguen E (2016) Évaluation des ressources géothermiques du bassin des Basses-Terres du Saint-Laurent. Final report INRS 1659, 100 pp. Accessed 29 Nov 2018
  9. Bernstein L (1991) The lower Ordovician Beekmantown Group, Québec and Ontario. Dissertation, Université de Montréal, 330 ppGoogle Scholar
  10. Cacace M, Kaiser BO, Lewerenz B, Scheck-Wenderoth M (2010) Geothermal energy in sedimentary basins: what we can learn from regional numerical models. Chem Erde 70(S3):33–46. CrossRefGoogle Scholar
  11. Clauser C (2006) Geothermal energy. In: Heinloth K (ed) Landolt-Börnstein, group VIII: advanced materials and technologies, vol 3. Energy technologies. Subvol C: renewable energies. Springer, Berlin, pp 493–604Google Scholar
  12. Comeau F-A, Bédard K, Malo M (2012) Les régions de Nicolet et de Villeroy: état des connaissances pour le stockage géologique du CO2. Rapport INRSCO2-2012-V1.3. Accessed 8 Nov 2012
  13. Crawford KM (2013) Determination of bulk density of rock core using standard industry methods. Dissertation, Michigan Technological UniversityGoogle Scholar
  14. Doveton JH, Cable HW (1979) Fast matrix methods for the lithological interpretation of geophysical logs. In: Geomathematical and Petrophysical Studies in Sedimentology. An International Symposium, pp 101–116.
  15. Dutrow BL, Travis BJ, Gable CW, Henry DJ (2001) Coupled heat and silica transport associated with dike intrusion into sedimentary rock: effects on isotherm location and permeability evolution. Geochim Cosmochim Acta 65(21):3749–3767. CrossRefGoogle Scholar
  16. Emslie RF (1975) Major rock units of the Morin complex, southwestern Quebec. Geological Survey of Canada, Paper 74–48Google Scholar
  17. Eppelbaum L, Kutasov I, Pilchin A (2014) Applied geothermics. Springer, BerlinCrossRefGoogle Scholar
  18. Feininger T, Goodacre AK (1995) The eight classical Monteregian hills at depth and the mechanism of their intrusion. Can J Earth Sci 32:1350–1364. CrossRefGoogle Scholar
  19. Fuchs S, Balling N (2016) Improving the temperature predictions of subsurface thermal models by using high-quality input data. Part 1: uncertainty analysis of the thermal-conductivity parameterization. Geothermics 64:42–54. CrossRefGoogle Scholar
  20. Fuchs S, Förster A (2014) Well-log based prediction of thermal conductivity of sedimentary successions: a case study from the North German basin. Geophys J Int 196(1):291–311. CrossRefGoogle Scholar
  21. Fuchs S, Schütz F, Förster H-J, Förster A (2013) Evaluation of common mixing models for calculating bulk thermal conductivity of sedimentary rocks: correction charts and new conversion equations. Geothermics 47:40–52. CrossRefGoogle Scholar
  22. Goutorbe B, Lucazeau F, Bonneville A (2007) Comparison of several BHT correction methods: a case study on an Australian data set. Accessed 13 Mar 2007
  23. Grasby SE, Allen DM, Bell S, Chen Z, Ferguson G, Jessop A, Kelman M, Ko M, Majorowicz J, Moore M, Raymond J, Therrien R (2012) Geothermal energy resource potential of Canada. Geological Survey of Canada, Open File 6914 (revised), 322 pp.
  24. Guillou-Frottier L, Mareschal JC, Jaupart C, Gariépy C, Lapointe R, Bienfait G (1995) Heat flow variations in the Grenville Province, Canada. Earth Planet Sci Lett 136:447–460. CrossRefGoogle Scholar
  25. Hartmann A, Rath V, Clauser C (2005) Thermal conductivity from core and well log data. Int J Rock Mech Min Sci 42:1042–1055. CrossRefGoogle Scholar
  26. Hersi OS, Lavoie D, Nowlan GS (2003) Reappraisal of the Beekmantown Group sedimentology and stratigraphy, Montréal area, southwestern Quebec: implications for understanding the depositional evolution of the Lower–Middle Ordovician Laurentian passive margin of eastern Canada. Can J Earth Sci 40:149–176. CrossRefGoogle Scholar
  27. Hodge DS, Hilfiker K, Morgan P, Swanberg CA (1979) Preliminary geothermal investigations in New York State. Trans Geotherm Res Council 3:317–320Google Scholar
  28. Hoppie BW (1996) High-resolution lithologic characterization of sequences on the New Jersey margin slope through inversion of leg 150 logging data for lithologies. In: Mountain GS, Miller KG, Blum P, Poag CW, Twitchell DC (eds) Proceedings of the ocean drilling program, scientific results, vol 150. Texas A&M University, Texas, pp 385–409. Google Scholar
  29. Jaupart C, Mareschal JC (2010) Heat generation and transport in the Earth. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  30. Jaupart C, Mareschal JC (2011) Lithosphere, continental: thermal structure. In: Gupta HK (ed) Encyclopedia of solid earth geophysics. Encyclopedia of earth sciences series. Springer, Dordrecht. Google Scholar
  31. Jessop AM, Allen VS, Bentkowski W, Burgess M, Drury M, Judge AS, Lewis T, Majorowicz J, Mareschal JC, Taylor AE (2005) The Canadian geothermal data compilation. Geological Survey of Canada, Open File 4887Google Scholar
  32. Kumarapeli PS (1985) Vestiges of lapetan rifting in the craton west of the northern Appalachians. Geosci Can 12:54–59Google Scholar
  33. Lachenbruch AH (1971) Vertical gradients of heat production in the continental crust 1. Theoretical detectability from near‐surface measurements. J Geophys Res 76:3842–3851. CrossRefGoogle Scholar
  34. Lavoie D (1994) Diachronous tectonic collapse of the Ordovician continental margin, eastern Canada: comparison between the Québec Reentrant and St. Lawrence Promontory. Can J Earth Sci 31:1309–1319. CrossRefGoogle Scholar
  35. Lavoie D, Pinet N, Castonguay S, Dietrich J, Giles P, Fowler M, Thériault R, Laliberté JY, St. Peter C, Hinds S, Hicks L, Klassen H (2009) Hydrocarbon systems in the Paleozoic basins of eastern Canada-presentations at the Calgary 2007 workshop. Geological Survey of Canada, Open File 5980.
  36. Lavoie D, Rivard C, Lefebvre R, Séjourné S, Thériault R, Duchesne MJ, Ahad JM, Wang B, Benoît N, Lamontagne C (2014) The Utica Shale and gas play in southern Quebec: geological and hydrogeological syntheses and methodological approaches to groundwater risk evaluation. Int J Coal Geol 126:77–91. CrossRefGoogle Scholar
  37. Lee Y, Deming D (1998) Evaluation of thermal conductivity temperature corrections applied in terrestrial heat flow studies. J Geophys Res Solid Earth 103:2447–2454. CrossRefGoogle Scholar
  38. Liu HJ, Giroux B, Harris LB, Quenette SM, Mansour J (2018) Numerical analysis of the role of radiogenic basement on temperature distribution in the St. Lawrence Lowlands, Québec. Geotherm Energy 6:30. CrossRefGoogle Scholar
  39. Majorowicz J, Grasby SE (2010) Heat flow, depth–temperature variations and stored thermal energy for enhanced geothermal systems in Canada. J Geophys Eng 7:232–241. CrossRefGoogle Scholar
  40. Majorowicz J, Minea V (2012) Geothermal energy potential in the St-Lawrence River area, Québec. Geothermics 43:25–36. CrossRefGoogle Scholar
  41. Majorowicz J, Minea V (2013) Geothermal anomalies in the Gaspésie Peninsula and Madeleine Islands, Québec. GRC Trans 37:295–300Google Scholar
  42. Mareschal JC, Jaupart C (2004) Variations of surface heat flow and lithospheric thermal structure beneath the North American craton. Earth Planet Sci Lett 223:65–77. CrossRefGoogle Scholar
  43. Minea V, Majorowicz J (2011) Assessment of enhanced geothermal systems potential in Québec, Canada. In: Proceedings of the AAPG/SPE/SEG HEDBERG research conference enhanced geothermal systems, Napa, California, 14–18 March 2011Google Scholar
  44. Minea V, Majorowicz J (2012) Preliminary assessment of deep geothermal resources in Trois-Rivières area, Québec. GRC Trans 36:709–715Google Scholar
  45. Moresi L, Quenette S, Lemiale V, Meriaux C, Appelbe B, Mühlhaus H-B (2007) Computational approaches to studying non-linear dynamics of the crust and mantle. Phys Earth Planet Int 163:69–82. CrossRefGoogle Scholar
  46. Nasr M (2016) Évaluation des propriétés thermiques de la plateforme du Saint-Laurent: mesures au laboratoire et approche diagraphique. Dissertation, Institut National de la Recherche Scientifique—Centre Eau Terre Environnement. Accessed 20 Oct 2016
  47. Nasr M, Raymond J, Malo M, Gloaguen E (2018) Geothermal potential of the St. Lawrence Lowlands sedimentary basin from well log analysis. Geothermics 75:68–80. CrossRefGoogle Scholar
  48. Paradis N (2004) Modélisation gravimétrique et magnétique des intrusions gabbronoritiques de Lapeyrère et d’Édouard, région de Portneuf-Mauricie, province Grenville, Québec. Masters thesis, Université du Québec INRS-Eau-Terre-Environment, pp 38–93. Accessed 21 Nov 2012
  49. Pasquale V, Verdoya M, Chiozzi P (2014) Heat flow and geothermal resources in northern Italy. Renew Sustain Energy Rev 36:277–285. CrossRefGoogle Scholar
  50. Perry C, Rosieanu C, Mareschal J-C, Jaupart C (2010) Thermal regime of the lithosphere in the Canadian Shield. Can J Earth Sci 47:389–408. CrossRefGoogle Scholar
  51. Person M, Garven G (1994) A sensitivity study of the driving forces on fluid flow during continental-rift basin evolution. Geol Soc Am Bull 106:461–475.;2 CrossRefGoogle Scholar
  52. Peters KE, Nelson PH (2009) Criteria to determine borehole formation temperatures for calibration of basin and petroleum system models. In: Proceedings of the AAPG annual convention and exhibition, Denver, Colorado, USA, 7–10 June 2009Google Scholar
  53. Pollack HN, Chapman DS (1977) Mantle heat flow. Earth Planet Sci Lett 34:174–184. CrossRefGoogle Scholar
  54. Pribnow DFC, Winter HR (1997) Radiogenic heat production in the upper third of continental crust from KTB. Geophys Res Lett 24(3):349–352. CrossRefGoogle Scholar
  55. Quenette SM, Moresi LN (2010) Models based experimentation: numerical modelling of 3D basin scale architecture heat & fluid flow. In: Proceedings of the AGU fall meeting, abstract ID V23D-08, San Francisco, California, December 2010Google Scholar
  56. Quenette S, Moresi L, Sunter PD, Appelbe BF (2007) Explaining StGermain: an aspect oriented environment for building extensible computational mechanics modeling software. In: Proceedings of the 2007 IEEE international parallel and distributed processing symposium, Long Beach, California, 26–30 March 2007Google Scholar
  57. Raymond J, Malo M, Comeau F-A, Bédard K, Lefebvre R, Therrien R (2012) Assessing the geothermal potential of the St. Lawrence Lowlands sedimentary basin in Quebec, Canada. In: Proceedings of the IAH 2012 congress, Niagara Falls, Canada, 16–21 September 2012Google Scholar
  58. Rimando RE, Benn K (2005) Evolution of faulting and paleo-stress field within the Ottawa graben, Canada. J Geodyn 39:337–360. CrossRefGoogle Scholar
  59. Rybach L (1976) Radioactive heat production in rocks and its relation to other petrophysical parameters. Pure Appl Geophys 114:309–318. CrossRefGoogle Scholar
  60. Rybach L (1986) Amount and significance of radioactive heat sources in sediments. Collect Colloq Semin 44:311–322Google Scholar
  61. Rybach L (1988) Determination of heat production rate. In: Hanel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat-flow density determination. Kluwer Academic Publishers, Dordrecht, pp 125–142Google Scholar
  62. Sekiguchi K (1984) A method for determining terrestrial heat flow in oil basinal areas. Tectonophysics 103:67–97. CrossRefGoogle Scholar
  63. Smith M, Mosley P (1993) Crustal heterogeneity and basement influence on the development of the Kenya Rift, East Africa. Tectonics 12(2):591–606. CrossRefGoogle Scholar
  64. Tester JW, Anderson BJ, Batchelor AS, Blackwell DD, DiPippo R, Drake EM, Garnish J, Livesay B, Moore MC, Nichols K, Petty S, Toksöz MN, Veatch RW Jr, Baria R, Augustine C, Murphy E, Negraru P, Richards M (2006) The future of geothermal energy: impact of enhanced geothermal systems (EGS) on the United States in the 21st century. Massachusetts Institute of Technology, DOE Contract DE-AC07-05ID14517, final report, 374 ppGoogle Scholar
  65. Tran Ngoc TD, Lefebvre R, Konstantinovskaya E, Malo M (2014) Characterization of deep saline aquifers in the Bécancour area, St Lawrence Lowlands, Québec, Canada: implications for CO2 geological storage. Environ Earth Sci 72(1):119–146. CrossRefGoogle Scholar
  66. Tremblay A, Long B, Massé M (2003) Supracrustal faults of the St. Lawrence rift system, Québec: kinematics and geometry as revealed by field mapping and marine seismic reflection data. Tectonophysics 369:231–252. CrossRefGoogle Scholar
  67. Williams DA (1991) Paleozoic geology of the Ottawa-St. Lawrence Lowland, southern Ontario. Ontario Geological Survey, miscellaneous paper 116, pp 107–111Google Scholar

Copyright information

© International Association for Mathematical Geosciences 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil MechanicsChinese Academy of SciencesWuhanChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Centre Eau Terre EnvironnementInstitut National de la Recherche ScientifiqueQuébecCanada

Personalised recommendations