Skip to main content

Advertisement

Log in

Fractal Properties of Greenland Isolines

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

The shape of Earth’s surface topography is determined by numerous competing processes that act to either roughen or smoothen the surface. Hence, calculating topographic roughness is a useful technique for understanding the relative importance of these processes. This study analyzes the relative surface roughness of the Greenland Ice Sheet by calculating the fractal dimension of surface elevation isolines. It is shown that the fractal dimension of isolines decreases at higher elevations for nearly all the ice sheet catchments. However, the magnitude of fractality, which represents the relative complexity or roughness of the surface, is spatially variable. Catchments in the central-east of the ice sheet have the highest fractal dimension, and the north catchment has the lowest fractal dimension. Multi-fractality at lower elevations for several catchments is observed including the southeast catchment, indicating that these catchments have variable dominant forcings at different length scales. Exploring the local variation of fractal dimensions shows that the majority of isolines with high fractal dimension are clustered in the central-east region and persist in contours up to 2500 m elevation. However, it is shown that local fractal dimensions are related to surface elevation, bed elevation, and ice thickness. It is also shown that local fractal dimensions are correlated with the ruggedness of basal topography (defined as the difference between the highest and lowest elevation in a window of \(3\times 3\) pixels on a 150 m grid). This analysis serves as a qualitative approach for investigating the processes that control the geometry of ice caps on other terrestrial planets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arnold N, Rees W (2003) Self-similarity in glacier surface characteristics. J Glaciol 49(167):547–554

    Google Scholar 

  • Baldassarri A, Sapoval B (2015) Power law statistics of cliff failures, scaling and percolation. Earth Surf Process Landf 40(8):1116–1128

    Google Scholar 

  • Baldassarri A, Montuori M, Prieto–Ballesteros O, Manrubia SC (2008) Fractal properties of isolines at varying altitude revealing different dominant geological processes on Earth. J Geophys Res 113:E09002. https://doi.org/10.1029/2007JE003066

    Article  Google Scholar 

  • Bamber J, Griggs J, Hurkmans R, Dowdeswell J, Gogineni S, Howat I, Mouginot J, Paden J, Palmer S, Rignot E, Steinhage D (2013) A new bed elevation dataset for Greenland. The Cryosphere 7(2):499–510

    Google Scholar 

  • Barton R (1990) Chaos and fractals. Math Teach 83(7):524–529

    Google Scholar 

  • Braithwaite R (1995a) Aerodynamic stability and turbulent sensible-heat flux over a melting ice surface, the Greenland Ice Sheet. J Glaciol 41(139):562–571

    Google Scholar 

  • Braithwaite R (1995b) Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling. J Glaciol 41(137):153–160

    Google Scholar 

  • Brown S (1987) A note on the description of surface roughness using fractal dimension. Geophys Res Lett 14(11):1095–1098

    Google Scholar 

  • Calov R, Greve R, Abe-Ouchi A, Bueler E, Huybrechts P, Johnson J, Pattyn F, Pollard D, Ritz C, Saito F et al (2010) Results from the Ice-Sheet Model Intercomparison Project–Heinrich Event INtercOmparison (ISMIP HEINO). J Glaciol 56(197):371–383

    Google Scholar 

  • Csatho B, Schenk A, van der Veen C, Babonis G, Duncan K, Rezvanbehbahani S, van den Broeke M, Simonsen S, Nagarajan S, van Angelen J (2014) Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics. Proc Natl Acad Sci 111(52):18478–18483

    Google Scholar 

  • Dai Z, Li C, Zhang Q (2004) Fractal analysis of shoreline patterns for crenulate-bay beaches, Southern China. Estuar Coast Shelf Sci 61(1):65–71

    Google Scholar 

  • Dawes P (2009) The bedrock geology under the inland ice: the next major challenge for Greenland mapping. Geol Surv Den Greenl Bull 17(5):57–60

    Google Scholar 

  • Erokhina O, Rogozhina I, Prange M, Bakker P, Bernales J, Paul A, Schulz M (2017) Dependence of slope lapse rate over the greenland ice sheet on background climate. J Glaciol 63(239):568–572

    Google Scholar 

  • Ettema J, Van den Broeke M, van Meijgaard E, Berg W, Box J, Steffen K (2010) Climate of the greenland ice sheet using a high-resolution climate model-part 1: evaluation. The Cryosphere 4(4):511–527

    Google Scholar 

  • Feder J (2013) Fractals. Springer, Berlin

    Google Scholar 

  • Felikson D, Bartholomaus T, Catania G, Korsgaard N, Kjær K, Morlighem M, Noël B, van den Broeke M, Stearns LA, Shroyer E et al (2017) Inland thinning on the Greenland ice sheet controlled by outlet glacier geometry. Nat Geosci 10(5):366–369

    Google Scholar 

  • Gudmundsson GH (2003) Transmission of basal variability to a glacier surface. J Geophys Res 108(B5):2253. https://doi.org/10.1029/2002JB002107

    Article  Google Scholar 

  • Gudmundsson G, Adalgeirsdóttir G, Björnsson H (2003) Observational verification of predicted increase in bedrock-to-surface amplitude transfer during a glacier surge. Ann Glaciol 36(1):91–96

    Google Scholar 

  • Herzfeld U, Mayer H (2003) Seasonal comparison of ice-surface structures in the ablation area of Jakobshavn Isbræ drainage system, West Greenland. Ann Glaciol 37:199–206

    Google Scholar 

  • Howat I, Negrete A, Smith B (2014) The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. The Cryosphere 8(4):1509–1518

    Google Scholar 

  • Isichenko MB (1992) Percolation, statistical topography, and transport in random media. Rev Mod Phys 64(4):961

    Google Scholar 

  • Jiang J, Plotnick R (1998) Fractal analysis of the complexity of United States coastlines. Math Geol 30(5):535–546

    Google Scholar 

  • Jordan T, Cooper M, Schroeder D, Williams C, Paden J, Siegert M, Bamber J (2017) Self-affine subglacial roughness: consequences for radar scattering and basal water discrimination in northern Greenland. The Cryosphere 11(3):1247

    Google Scholar 

  • Klinkenberg B (1994) A review of methods used to determine the fractal dimension of linear features. Math Geol 26(1):23–46

    Google Scholar 

  • MacGregor J, Fahnestock M, Catania G, Aschwanden A, Clow G, Colgan W, Gogineni S, Morlighem M, Nowicki S, Paden J et al (2016) A synthesis of the basal thermal state of the Greenland Ice Sheet. J Geophys Res Earth Surf 121(7):1328–1350

    Google Scholar 

  • Malamud B, Turcotte D (1999) Self-affine time series: I. generation and analyses. Adv Geophys 40:1–90

    Google Scholar 

  • Mandelbrot B (1967) How long is the coast of Britain. Science 156(3775):636–638

    Google Scholar 

  • Mandelbrot B (1983) The fractal geometry of nature, vol 173. Macmillan, London

    Google Scholar 

  • Mark D, Aronson P (1984) Scale-dependent fractal dimensions of topographic surfaces: an empirical investigation, with applications in geomorphology and computer mapping. J Int Assoc Math Geol 16(7):671–683

    Google Scholar 

  • Matsushita M, Ouchi S (1989) On the self-affinity of various curves. Physica D 38(1–3):246–251

    Google Scholar 

  • Morlighem M, Rignot E, Seroussi H, Larour E, Ben Dhia H, Aubry D (2011) A mass conservation approach for mapping glacier ice thickness. Geophys Res Lett 38:L19503. https://doi.org/10.1029/2011GL048659

    Article  Google Scholar 

  • Morlighem M, Rignot E, Mouginot J, Seroussi H, Larour E (2014) Deeply incised submarine glacial valleys beneath the Greenland ice sheet. Nat Geosci 7(6):418–422

    Google Scholar 

  • Nolin A, Payne M (2007) Classification of glacier zones in western Greenland using albedo and surface roughness from the Multi-angle Imaging SpectroRadiometer (MISR). Remote Sens Environ 107(1):264–275

    Google Scholar 

  • Oswald GK, Rezvanbehbahani S, Stearns LA (2018) Radar evidence of ponded subglacial water in greenland. J Glaciol 64(247):711–729

    Google Scholar 

  • Payne A, Huybrechts P, Abe-Ouchi A, Calov R, Fastook J, Greve R, Marshall S, Marsiat I, Ritz C, Tarasov L et al (2000) Results from the EISMINT model intercomparison: the effects of thermomechanical coupling. J Glaciol 46(153):227–238

    Google Scholar 

  • Phillips J (1986) Spatial analysis of shoreline erosion, Delaware Bay, New Jersey. Ann Assoc Am Geogr 76(1):50–62

    Google Scholar 

  • Price S, Payne A, Catania G, Neumann T (2008) Seasonal acceleration of inland ice via longitudinal coupling to marginal ice. J Glaciol 54(185):213–219

    Google Scholar 

  • Rees W (1992) Measurement of the fractal dimension of ice-sheet surfaces using Landsat data. Int J Remote Sens 13(4):663–671

    Google Scholar 

  • Rees W, Arnold N (2006) Scale-dependent roughness of a glacier surface: implications for radar backscatter and aerodynamic roughness modelling. J Glaciol 52(177):214–222

    Google Scholar 

  • Rezvanbehbahani S, van der Veen C, Stearns LA (2019) An improved analytical solution for the temperature profile of ice sheets. J Geophys Res Earth Surf. https://doi.org/10.1029/2018JF004774

    Google Scholar 

  • Richardson L (1961) The problem of contiguity. Gen Syst Yearb 6:139–187

    Google Scholar 

  • Rippin D (2013) Bed roughness beneath the Greenland ice sheet. J Glaciol 59(216):724–732

    Google Scholar 

  • Sadegh-Vaziri R, Ludwig K, Sundmacher K, Babler M (2018) Mechanisms behind overshoots in mean cluster size profiles in aggregation-breakup processes. J Colloid Interface Sci 528:336–348. https://doi.org/10.1016/j.jcis.2018.05.064

    Article  Google Scholar 

  • Sapoval B, Baldassarri A, Gabrielli A (2004) Self-stabilized fractality of seacoasts through damped erosion. Phys Rev Lett 93(9):098501

    Google Scholar 

  • Sharma P, Byrne S (2010) Constraints on titans topography through fractal analysis of shorelines. Icarus 209(2):723–737

    Google Scholar 

  • Smeets C, Van den Broeke M (2008) Temporal and spatial variations of the aerodynamic roughness length in the ablation zone of the Greenland ice sheet. Bound Layer Meteorol 128(3):315–338

    Google Scholar 

  • Smith L, Chu V, Yang K, Gleason C, Pitcher L, Rennermalm A, Legleiter C, Behar A, Overstreet B, Moustafa S et al (2015) Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet. Proc Natl Acad Sci 112(4):1001–1006

    Google Scholar 

  • Sreenivasan K (1991) Fractals and multifractals in fluid turbulence. Annu Rev Fluid Mech 23(1):539–604

    Google Scholar 

  • Tanner B, Perfect E, Kelley J (2006) Fractal analysis of Maine’s glaciated shoreline tests established coastal classification scheme. J Coast Res 22(5):1300–1304

    Google Scholar 

  • Tarboton D, Bras R, Rodriguez-Iturbe I (1988) The fractal nature of river networks. Water Resour Res 24(8):1317–1322

    Google Scholar 

  • Turcotte D (1997) Fractals and chaos in geology and geophysics. Cambridge University Press, Cambridge

    Google Scholar 

  • Van den Broeke M, Bamber J, Ettema J, Rignot E, Schrama E, van de Berg W, van Meijgaard E, Velicogna I, Wouters B (2009) Partitioning recent greenland mass loss. Science 326(5955):984–986

    Google Scholar 

  • Van der Veen C, Krabill W, Csatho B, Bolzan J (1998) Surface roughness on the Greenland ice sheet from airborne laser altimetry. Geophys Res Lett 25(20):3887–3890

    Google Scholar 

  • van der Veen CJ, Ahn Y, Csatho BM, Mosley-Thompson E, Krabill WB (2009) Surface roughness over the northern half of the Greenland Ice Sheet from airborne laser altimetry. J Geophys Res 114:F01001. https://doi.org/10.1029/2008JF001067

    Article  Google Scholar 

  • Voss RF (1988) Fractals in nature: from characterization to simulation. In: Peitgen HO, Saupe D (eds) The science of fractal images. Springer, New York, pp 21–70

    Google Scholar 

  • Wilson M, OConnell B, Brown C, Guinan J, Grehan A (2007) Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar Geodesy 30(1–2):3–35

    Google Scholar 

Download references

Acknowledgements

The authors thank the editor-in-chief Roussos Dimitrakopoulos and two anonymous referees whose comments greatly improved the clarity of the manuscript. The authors acknowledge the contribution of Logan C. Byers for sharing and extensive help with his fractal code. We also like to thank Steve Rector at Center for Remote Sensing of Ice Sheets (CReSIS) for technical support. The Python code that was developed for this study is available at https://bitbucket.org/soroushr/fractal-dimension-greenland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soroush Rezvanbehbahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezvanbehbahani, S., van der Veen, C.J. & Stearns, L.A. Fractal Properties of Greenland Isolines. Math Geosci 51, 1075–1090 (2019). https://doi.org/10.1007/s11004-019-09788-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-019-09788-7

Keywords

Navigation