Skip to main content
Log in

A Multivariate Geostatistical Methodology to Delineate Areas of Potential Interest for Future Sedimentary Gold Exploration

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

This paper describes a multivariate geostatistical methodology to delineate areas of potential interest for future sedimentary gold exploration, with an application to an abandoned sedimentary gold mining region in Portugal. The main challenge was the existence of only a dozen gold measurements confined to the grounds of the old gold mines, which precluded the application of traditional interpolation techniques, such as cokriging. The analysis could, however, capitalize on 376 stream sediment samples that were analysed for 22 elements. Gold (Au) was first predicted at all 376 locations using linear regression (\(R^{2}=0.798\)) and four metals (Fe, As, Sn and W), which are known to be mostly associated with the local gold’s paragenesis. One hundred realizations of the spatial distribution of gold content were generated using sequential indicator simulation and a soft indicator coding of regression estimates, to supplement the hard indicator coding of gold measurements. Each simulated map then underwent a local cluster analysis to identify significant aggregates of low or high values. The 100 classified maps were processed to derive the most likely classification of each simulated node and the associated probability of occurrence. Examining the distribution of the hot-spots and cold-spots reveals a clear enrichment in Au along the Erges River downstream from the old sedimentary mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anselin L (1995) Local indicators of spatial association—LISA. Geogr Anal 27:93–115

    Article  Google Scholar 

  • Antunes IMHR, Albuquerque MTD (2013) Using indicator kriging for the evaluation of arsenic potential contamination in an abandoned mining area (Portugal). Sci Total Environ 442:545–552

    Article  Google Scholar 

  • Antunes IMHR, Neiva AMR, Silva MMVG (2002) The mineralized veins and the impact of old mine workings on the environment at Segura, central Portugal. Chem Geol 190:417–31

    Article  Google Scholar 

  • Bin H (1995) Assessment of geochemical anomalies for gold exploration using lead isotopes in west Hainan, China. J Geochem Explor 55:33–48

    Article  Google Scholar 

  • Cambardella CA, Moorman AT, Novak JM, Parkin TB, Karlen DL, Turco RF, Konopka AE (1994) Field-scale variability of soil properties in central Iowa soils. Soil Sci Soc Am J 58:1501–1511

    Article  Google Scholar 

  • Cameron EM, Hamilton SM, Leybourne MI, Hall GEM, McClenaghan MB (2004) Finding deeply buried deposits using geochemistry. Geochem Explor Environ Anal 4:7–32

    Article  Google Scholar 

  • Carranza EJM (2010) Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes. Geochem Explor Environ Anal 10:171–187

    Article  Google Scholar 

  • Carranza EJM (2011) Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. J Geochem Explor 110:167–185

    Article  Google Scholar 

  • Carranza EJM, Owusu EA, Hale M (2009) Mapping of prospectivity and estimation of number of undiscovered prospects for lode gold, southwestern Ashanti Belt, Ghana. Miner Depos 44:915–938

    Article  Google Scholar 

  • Castro MC, Singer BH (2006) Controlling the false discovery rate: a new application to account for multiple and dependent tests in local statistics of spatial association. Geogr Anal 38:180–208

    Article  Google Scholar 

  • Chapman RJ, Mortensen JK (2006) Application of microchemical characterization of placer gold grains to exploration for epithermal gold mineralization in regions of poor exposure. J Geochem Explor 91:1–26

    Article  Google Scholar 

  • Chapman RJ, Leake RC, Moles RN, Earls G, Copper C, Harrington K, Berzins R (2000) The application of microchemical analysis of alluvial gold grains to the understanding of complex local and regional gold mineralization: a case study in the Irish and Scottish Caledonides. Econ Geol Bull Soc Econ Geol 95:1753–1773

    Google Scholar 

  • Darwish MAG, Poellmann H (2010) Geochemical exploration for gold in the Nile Valley Block (A) area, Wadi Allaqi, South Egypt. Chem Erde 70:353–362

    Article  Google Scholar 

  • Davis JC (2002) Statistics and data analysis in geology. Wiley, New York 638 pp

    Google Scholar 

  • Deutsch CV (1997) Direct assessment of local accuracy and precision. In: Baafi EY, Schofield NA (eds) Geostatistics wollongong ’96. Kluwer, Dordrecht, pp 115–125

    Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB: geostatistical software library and user’s guide, 2nd edn. Oxford University Press, New York 369 p

    Google Scholar 

  • El-Makky AM (2011) Statistical analyses of La, Ce, Nd, Y, Nb, Ti, P and Zr in bedrocks and their significance in geochemical exploration at the Um Garayat gold mine Area, Eastern Desert, Egypt. Nat Resour Res 20:157–176

    Article  Google Scholar 

  • Fletcher WK (1997) Stream sediment geochemistry in today’s exploration world. In: Gubins AG (ed) Proceedings of exploration 97—4th decennial international conference on mineral exploration, pp 249–260

  • Fu WJ, Jiang PK, Zhou GM, Zhao KL (2014) Using Moran’s and GIS to study the spatial pattern of forest litter carbon density in a subtropical region of south-eastern China. Biogeosciences 11:2401–2409

    Article  Google Scholar 

  • Goovaerts P (1994) Comparative performance of indicator algorithms for modeling conditional probability distribution functions. Math Geol 26(3):389–411

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

  • Goovaerts P (2006) Geostatistical analysis of disease data: visualization and propagation of spatial uncertainty in cancer mortality risk using Poisson kriging and p-field simulation. Int J Health Geogr 5:7

    Article  Google Scholar 

  • Goovaerts P (2009) AUTO-IK: a 2D indicator kriging program for the automated non-parametric modeling of local uncertainty in earth sciences. Comput Geosci 35:1255–1270

    Article  Google Scholar 

  • Goovaerts P (2010) Geostatistical analysis of county-level lung cancer mortality rates in the Southeastern US. Geogr Anal 42:32–52

    Article  Google Scholar 

  • Goovaerts P, Jacquez GM (2005) Detection of temporal changes in the spatial distribution of cancer rates using local Moran’s I and geostatistically simulated spatial neutral models. J Geogr Syst 7:137–159

    Article  Google Scholar 

  • Goovaerts P, AvRuskin G, Meliker J, Slotnick M, Jacquez GM, Nriagu J (2005) Geostatistical modeling of the spatial variability of arsenic in groundwater of Southeast Michigan. Water Resour Res 41(7):W07013

  • Goovaerts P, Jacquez GM, Marcus WA (2005) Geostatistical and local cluster analysis of high resolution hyperspectral imagery for detection of anomalies. Remote Sens Environ 95:351–367

    Article  Google Scholar 

  • Goovaerts P, Albuquerque T, Antunes IMHR (2014) A spatial statistical approach for sedimentary gold exploration: a Portuguese case study. Mathematics of planet earth. In: Lecture notes in earth system sciences, pp 545–548. doi:10.1007/978-3-642-32408-6_119 (ISSN 2193-8571, ISBN 978-3-642-32407-9)

  • Hale M, Plant JA (1994) Drainage geochemistry. In: Govett GJS (ed) Handbook of Exploration Geochemistry, vol 6. Elsevier, Amsterdam

    Google Scholar 

  • Harraz HZ, Hamdy MM, El-Mamoney MH (2012) Multi-element association analysis of stream sediment geochemistry data for predicting gold deposits in Barramiya gold mine, Eastern Desert, Egypt. J Afr Earth Sci 68:1–14

    Article  Google Scholar 

  • Hronsky JMA (2004) The science of exploration targeting. In: Muhling J (ed) SEG 2004, predictive mineral discovery under cover. Publication 33. Centre for Global Metallogeny, University of Western Australia, pp 129–133

  • Hronsky JMA, Groves DJ (2008) Science of targeting: definition, strategies, targeting and performance measurement. Aust J Earth Sci 55:3–12

    Article  Google Scholar 

  • Geológico Instituto e Mineiro (1988) Reports from a prospecting project for tungsten, tin and associated minerals from Góis-Segura. Metallic Mineral Prospecting Section, Porto

  • Madani AA (2011) Knowledge-driven GIS modeling technique for gold exploration, Bulghah gold mine area, Saudi Arabia. Egypt J Remote Sens Space Sci 14:91–97

    Google Scholar 

  • Maroto AG, Navarrete J, Jimenez RA (1997) Concentraciones de metales pesados en la vegetación autoctona desarrolada sobre los suelos del entorno de una mina abandonada. Bol Geol Minero 108–1:67–74

    Google Scholar 

  • McCuaig TC, Beresford S, Hronsky J (2010) Translating the mineral systems approach into an effective exploration targeting system. Ore Geol Rev 38:128–138

    Article  Google Scholar 

  • McInnes M, Greenough JD, Fryer BJ, Wells R (2008) Trace elements in native gold by solution IPC-MS and their use in mineral exploration: a British Columbia example. Appl Geochem 23:1076–1085

    Article  Google Scholar 

  • Mortensen JK, Chapman R, LeBarge W, Jackson L (2004) Application of placer and lode gold geochemistry to gold exploration in western Yukon. Yukon Explor Geol 2004:205–212

    Google Scholar 

  • Oliveira JT, Pereira E, Ramalho M, Antunes MT, Monteiro JH (coord) (1992) Carta Geológica de Portugal à escala 1/500 000 (5\({{\rm a}}\) edição). Serviços geológicos de Portugal, Lisboa

  • Outridge PM, Dorherty W, Gregoire DC (1998) Determination of trace elements signatures in placer gold by laser ablation—inductively coupled plasma–mass spectrometry as a potential aid for gold exploration. J Geochem Explor 60:229–240

    Article  Google Scholar 

  • Reimann C, Filzmoser P, Garret RG, Dutter R (2008) Statistical data analysis explained. Applied Environmental Statistics with R, Wiley Chichester 343 pp

    Book  Google Scholar 

  • Sadeghi M, Morris GA, Carranza EJM, Ladenberger A, Andersson M (2013) Rare earth element distribution and mineralization in Sweden: an application of principal component analysis to FOREGS soil geochemistry. In: Foley N, De Vivo B, Salminen R (guest eds) Rare earth elements: the role of geology, exploration, and analytical geochemistry in ensuring diverse sources to supply and a globally sustainable resource (special issue). J Geochem Explor 133:160–175

  • Sadeghi M, Billay A, Carranza EJM (2014) Analysis and mapping of soil geochemical anomalies: implications for bedrock mapping and gold exploration in Giyani area. J Geochem Explor (South Africa). doi:10.1016/j.gexplo.2014.11.018

  • Santos Oliveira JM, Pedrosa MY, Canto Machado MJ, Rochas Silva J (1998) Impacte ambiental provocado pela actividade mineira. Caracterização da situação junto da Mina de Jales, avaliação dos riscos e medidas de reabilitação. Actas do V Congresso Nacional de Geologia 84/2, pp E74–E77

  • Townley BK, Hérail G, Maksaev V, Palacios C, de Parseval P, Sepulveda F, Orellana R, Rivas P, Ulloa C (2003) Gold grain morphology and composition as an exploration tool: application to gold exploration in covered areas. Geochem Explor Environ Anal 3:29–38

    Article  Google Scholar 

  • Viladevall M, Font X, Carmona JM (1999) Multidata set analysis for gold-deposit exploration criteria: application in the Catalonian Costal Ranges (NE Spain). J Geochem Explor 66:183–197

    Article  Google Scholar 

  • Wang CM, Cheng QM, Deng J, Xie SY (2008) Magmatic hydrothermal superlarge metallogenic systems—a case study of the Nannihu Ore Field. J China Univ Geosci 19:391–403

    Article  Google Scholar 

  • Zhang C, Luo L, Xu W (2008) Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland. Sci Total Environ 398:212–221

    Article  Google Scholar 

  • Zuo R (2011) Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum-area fractal modeling in the Gangdese Belt, Tibet (China). J Geochem Explor 111:13–22

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Instituto Geológico e Mineiro (Portugal) for the data on stream sediments and associated informations about the study area. The research by P. Goovaerts was funded by Grant R21 ES021570 from the National Cancer Institute. The views stated in this publication are those of the author and do not necessarily represent the official views of the NCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Goovaerts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goovaerts, P., Albuquerque, M.T.D. & Antunes, I.M.H.R. A Multivariate Geostatistical Methodology to Delineate Areas of Potential Interest for Future Sedimentary Gold Exploration. Math Geosci 48, 921–939 (2016). https://doi.org/10.1007/s11004-015-9632-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-015-9632-8

Keywords

Navigation