Mathematical Geosciences

, Volume 48, Issue 2, pp 149–162 | Cite as

Wavelet-Based Clustering of Sea Level Records

  • S. M. Barbosa
  • S. Gouveia
  • M. G. Scotto
  • A. M. Alonso
Article
  • 357 Downloads

Abstract

The classification of multivariate time series in terms of their corresponding temporal dependence patterns is a common problem in geosciences, particularly for large datasets resulting from environmental monitoring networks. Here a wavelet-based clustering approach is applied to sea level and atmospheric pressure time series at tide gauge locations in the Baltic Sea. The resulting dendrogram discriminates three spatially-coherent groups of stations separating the southernmost tide gauges, reflecting mainly high-frequency variability driven by zonal wind, from the middle-basin stations and the northernmost stations dominated by lower-frequency variability and the response to atmospheric pressure.

Keywords

Wavelets Clustering Sea level Time series 

References

  1. Alonso AM, Berrendero JR, Hernández A, Justel A (2006) Time series clustering based on forecast density. Comput Stat Data Anal 51:762–776CrossRefGoogle Scholar
  2. Barbosa SM, Fernandes MJ, Silva ME (2007) Scale-based comparison of sea level observations in the North Atlantic from satellite altimetry and tide gauges. In: Tregoning P, Rizos C (eds) Dynamic planet: monitoring and understanding a dynamic planet with geodetic and oceanographic tools. Springer, Berlin, Heidelberg, pp 63–66CrossRefGoogle Scholar
  3. Barbosa SM, Silva ME, Fernandes MJ (2009) Multi-scale variability patterns in NCEP/NCAR reanalysis sea-level pressure. Theor Appl Climatol 96:319–326CrossRefGoogle Scholar
  4. Bastos A, Trigo RM, Barbosa SM (2013) Discrete wavelet analysis of the influence of the North Atlantic Oscillation on Baltic sea level. Tellus A 65:20077CrossRefGoogle Scholar
  5. Caiado J, Maharaj EA, D’Urso P (2015) Time series clustering. In: Hennig CM, Meila M, Murtagh F, Rocci R (eds) Handbook of cluster analysis. Chapman and Hall/CRC, Boca Raton, FloridaGoogle Scholar
  6. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRefGoogle Scholar
  7. Díaz SP, Vilar JA (2010) Comparing several parametric and nonparametric approaches to time series clustering: a simulation study. J Classif 27:333–362CrossRefGoogle Scholar
  8. D’Urso P, Maharaj EA (2012) Wavelets-based clustering of multivariate time series. Fuzzy Set Syst 193:33–61CrossRefGoogle Scholar
  9. D’Urso P, De Giovanni L, Maharaj EA, Massari R (2014) Wavelet-based self-organizing maps for classifying multivariate time series. Chemometrics 28:28–51CrossRefGoogle Scholar
  10. Everitt BS, Landau S, Leese M, Stahl D (2011) Cluster analysis. Wiley, West SussexCrossRefGoogle Scholar
  11. Gustafsson BG, Andersson HC (2001) Modeling the exchange of the Baltic Sea from the meridional atmospheric pressure difference across the North Sea. J Geophys Res 106:19731–19744CrossRefGoogle Scholar
  12. Hansen L (2007) Hourly values of sea level observations from two stations in Denmark Hornbæk 1890–2005 and Gedser 1891–2005. DMI Technical Report No. 07-09, DMIGoogle Scholar
  13. Kulikov EA, Medvedev IP (2013) Variability of the Baltic sea level and floods in the gulf of Finland. Oceanology 53:145–151CrossRefGoogle Scholar
  14. Liao TW (2005) Clustering of time series data—a survey. Pattern Recognit 38:1857–1874CrossRefGoogle Scholar
  15. Liu S, Maharaj EA, Inder B (2014) Polarization of forecast densities: a new approach to time series classification. Comput Stat Data Anal 70:345–361CrossRefGoogle Scholar
  16. Maharaj EA, D’Urso P, Galagedera DUA (2010) Wavelet-based fuzzy clustering of time series. J Classif 27:231–275CrossRefGoogle Scholar
  17. Percival D, Mojfeld H (1997) Analysis of subtidal coastal sea level fluctuations using wavelets. J Am Stat Assoc 92:868–880CrossRefGoogle Scholar
  18. Percival D, Walden AT (2000) Wavelet methods for time series analysis. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  19. Percival DB (2008) Analysis of geophysical time series using discrete wavelet transforms: an overview. In: Donner RV, Barbosa SM (eds) Nonlinear time series analysis in the geosciences—applications in climatology, geodynamics, and solar-terrestrial physics, pp 61–79. Springer, Berlin HeidelbergGoogle Scholar
  20. Samuelsson M, Stigebrandt A (1996) Main characteristics of the long-term sea level variability in the Baltic sea. Tellus 48:672–683CrossRefGoogle Scholar
  21. Scotto MG, Barbosa SM, Alonso AM (2009) Model-based clustering of Baltic sea-level. Appl Ocean Res 31:4–11CrossRefGoogle Scholar
  22. Scotto MG, Alonso AM, Barbosa SM (2010) Clustering time series of sea levels: extreme value approach. J Waterw Port Coast Ocean Eng 136:215–225CrossRefGoogle Scholar
  23. Scotto MG, Barbosa SM, Alonso AM (2011) Model-based clustering of extreme sea level heights. In: Wright LL (ed) Sea level rise, coastal engineering, shorelines and tides, pp 277–293. Nova Science Publishers, New-YorkGoogle Scholar
  24. Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB (2001) Missing value estimation methods for DNA microarrays. Bioinformatics 17:520–525CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2015

Authors and Affiliations

  1. 1.INESC TEC-INESC Technology and Science, Rua Dr. Roberto FriasPortoPortugal
  2. 2.Institute of Electronics and Informatics Engineering of Aveiro (IEETA) and CIDMAUniversidade de AveiroAveiroPortugal
  3. 3.CEMAT, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  4. 4.Department of Statistics and Instituto Flores de LemusUniversidad Carlos III de MadridMadridSpain

Personalised recommendations