Skip to main content
Log in

Training Images from Process-Imitating Methods

An Application to the Lower Namoi Aquifer, Murray-Darling Basin, Australia

  • Special Issue
  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

The lack of a suitable training image is one of the main limitations of the application of multiple-point statistics (MPS) for the characterization of heterogeneity in real case studies. Process-imitating facies modeling techniques can potentially provide training images. However, the parameterization of these process-imitating techniques is not straightforward. Moreover, reproducing the resulting heterogeneous patterns with standard MPS can be challenging. Here the statistical properties of the paleoclimatic data set are used to select the best parameter sets for the process-imitating methods. The data set is composed of 278 lithological logs drilled in the lower Namoi catchment, New South Wales, Australia. A good understanding of the hydrogeological connectivity of this aquifer is needed to tackle groundwater management issues. The spatial variability of the facies within the lithological logs and calculated models is measured using fractal dimension, transition probability, and vertical facies proportion. To accommodate the vertical proportions trend of the data set, four different training images are simulated. The grain size is simulated alongside the lithological codes and used as an auxiliary variable in the direct sampling implementation of MPS. In this way, one can obtain conditional MPS simulations that preserve the quality and the realism of the training images simulated with the process-imitating method. The main outcome of this study is the possibility of obtaining MPS simulations that respect the statistical properties observed in the real data set and honor the observed conditioning data, while preserving the complex heterogeneity generated by the process-imitating method. In addition, it is demonstrated that an equilibrium of good fit among all the statistical properties of the data set should be considered when selecting a suitable set of parameters for the process-imitating simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bailey R, Smith D (2010) Thematic set: scaling in stratigraphic data series: implications for practical stratigraphy. First Break. doi:10.3997/1365-2397.2010001

    Google Scholar 

  • Blakers R, Kelly B, Anderssen B, Mariethoz G, Timms W (2011) 3D dendrogram analysis for mapping aquifer connectivity and flow model structure. In: MODFLOW and more 2011: integrated hydrologic modeling. Proceedings of the 10th international conference of the IGWMC, Colorado School of Mines, International Groundwater Modeling Center (IGWMC), Golden, Colorado, USA

    Google Scholar 

  • Boisvert JB, Pyrcz MJ, Deutsch CV (2007) Multiple-point statistics for training image selection. Nat Resour Res 16(4):313–321. doi:10.1007/s11053-008-9058-9

    Article  Google Scholar 

  • Caers J (2005) Petroleum geostatistics. Society of Petroleum Engineers, Richardson

    Google Scholar 

  • Carle S, Fogg G (1996) Transition probability-based indicator geostatistics. Math Geol 28:453–476. doi:10.1007/BF02083656

    Article  Google Scholar 

  • Chugunova T (2008) Contrainte des modèles génétiques de réservoirs par une approche de reconnaissance statistique de forme. PhD thesis, École des Mines, Paris

  • Chugunova T, Hu L, Lerat O (2007) Conditioning a process-based fluvial model using a non-stationary multiple-point statistics approach. In: EAGE petroleum geostatistics, extended abstract

    Google Scholar 

  • Cojan I, Fouché O, Lopéz S, Rivoirard J (2005) Process-based reservoir modelling in the example of meandering channel. In: Leuangthong O, Deutsch C (eds) Geostatistics Banff 2004, Quantitative geology and geostatistics, vol 14. Springer, Dordrecht, pp 611–619. doi:10.1007/978-1-4020-3610-1_62

    Chapter  Google Scholar 

  • Comunian A, Renard P, Straubhaar J (2012) 3D multiple-point statistics simulation using 2D training images. Comput Geosci 40:49–65. doi:10.1016/j.cageo.2011.07.009

    Article  Google Scholar 

  • Guardiano FB, Srivastava RM (1993) Multivariate geostatistics: beyond bivariate moments. In: Soares A (ed) Geostatistics: Troia ’92, vol 1. Kluwer, Dordrecht, pp 133–144

    Chapter  Google Scholar 

  • Hu LY, Chugunova T (2008) Multiple-point geostatistics for modeling subsurface heterogeneity: a comprehensive review. Water Resour Res 44(11):W11,413. doi:10.1029/2008WR006993

    Google Scholar 

  • Huysmans M, Dassargues A (2010) Application of multiple-point geostatistics on modelling groundwater flow and transport in a cross-bedded aquifer. In: Atkinson PMM, Lloyd CDD (eds) GeoENV VII, geostatistics for environmental applications. Quantitative geology and geostatistics, vol 16. Springer, Dordrecht, pp 139–150

    Chapter  Google Scholar 

  • Ikeda S, Parker G, Sawai K (1981) Bend theory of river meanders. 1. Linear development. J Fluid Mech 112:363–377. doi:10.1017/S0022112081000451

    Article  Google Scholar 

  • Kollet SJ, Maxwell RM, Woodward CS, Smith S, Vanderborght J, Vereecken H, Simmer C (2010) Proof of concept of regional scale hydrologic simulations at hydrologic resolution utilizing massively parallel computer resources. Water Resour Res 46(4):W04,201. doi:10.1029/2009WR008730

    Google Scholar 

  • Koltermann CE, Gorelick SM (1996) Heterogeneity in sedimentary deposits: a review of structure-imitating, process-imitating, and descriptive approaches. Water Resour Res 32(9):2617–2658. doi:10.1029/96WR00025

    Article  Google Scholar 

  • Le Coz M, Genthon P, Adler PM (2011) Multiple-point statistics for modeling facies heterogeneities in a porous medium: the Komadugu-Yobe alluvium, Lake Chad basin. Math Geosci 43:861–878. doi:10.1007/s11004-011-9353-6

    Article  Google Scholar 

  • Lopez (2003) Modélisation de réservoirs chenalisés méandriformes, approche génétique et stochastique. PhD thesis, École des Mines, Paris

  • Lopez S, Galli A, Cojan I (2001) Fluvial meandering channellized reservoirs: a stochastic and process based approach. In: IAMG annual meeting, Cancun, Mexico

    Google Scholar 

  • Lopez S, Cojan I, Rivoirard J, Galli A (2009) Process-based stochastic modelling: meandering channelized reservoirs. Wiley/Blackwell, New York/Oxford, pp 139–144. doi:10.1002/9781444303131.ch5

    Google Scholar 

  • Maharaja A (2008) Tigenerator: object-based training image generator. Comput Geosci 34(12):1753–1761

    Article  Google Scholar 

  • Mariethoz G, Renard P, Straubhaar J (2010) The direct sampling method to perform multiple-point geostatistical simulations. Water Resour Res 46(11):W11,536. doi:10.1029/2008WR007621

    Google Scholar 

  • Meerschman E, Pirot G, Mariethoz G, Straubhaar J, Meirvenne MV, Renard P (2013) A practical guide to performing multiple-point statistical simulations with the direct sampling algorithm. Comput Geosci 52(0):307–324. doi:10.1016/j.cageo.2012.09.019

    Article  Google Scholar 

  • Michael HA, Li H, Boucher A, Sun T, Caers J, Gorelick SM (2010) Combining geologic-process models and geostatistics for conditional simulation of 3-d subsurface heterogeneity. Water Resour Res 46(5):W05,527. doi:10.1029/2009WR008414

    Google Scholar 

  • Pyrcz MJ, McHargue T, Clark J, Sullivan M, Strebelle S (2012) Event-based geostatistical modeling: description and applications. In: Abrahamsen P, Hauge R, Kolbjørnsen O (eds) Geostatistics Oslo 2012. Quantitative geology and geostatistics, vol 17. Springer, Dordrecht, pp 27–38. http://dx.doi.org/10.1007/978-94-007-4153-9_3. doi:10.1007/978-94-007-4153-9_3

    Chapter  Google Scholar 

  • Renard P, Allard D (2013) Connectivity metrics for subsurface flow and transport. Adv Water Resour 51(0):168–196. http://www.sciencedirect.com/science/article/pii/S0309170811002223. 35th Year Anniversary Issue. doi:10.1016/j.advwatres.2011.12.001

    Article  Google Scholar 

  • Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34:1–21. doi:10.1023/A:1014009426274

    Article  Google Scholar 

  • Sun T, Meakin P, Jøssang T (2001) Meander migration and the lateral tilting of floodplains. Water Resour Res 37(5):1485–1502. doi:10.1029/2000WR900343

    Article  Google Scholar 

  • Sun T, Meakin P, Jossang T, Schwarz K (1996) A simulation model for meandering rivers. Water Resour Res 32(9):2937–2954. doi:10.1029/96WR00998

    Article  Google Scholar 

  • Williams N, Merrick RP, Ross J (1989) Natural and induced recharge in the lower Namoi valley, New South Wales. In: Sharma M (ed) Groundwater recharge. Proceedings of the symposium on groundwater recharge, 6–9 Luly, 1987. Balkema, Rotterdam, pp 239–253

    Google Scholar 

  • Young RW, Young ARM, Price DM, Wray RAL (2002) Geomorphology of the Namoi alluvial plain, northwestern New South Wales. Aust J Earth Sci 49(3):509–523. doi:10.1046/j.1440-0952.2002.00934.x

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Centre for Groundwater Research and Training, Australia. The authors are grateful to F. Oriani, M.J. Pyrcz, the guest editor P. Renard, the editor in chief R. Dimitrakopoulos, and one anonymous reviewer for their constructive comments. They also acknowledge the University of Neuchâtel for providing the MPS simulation software DeeSse “DS: Multiple-Points Simulation by Direct Sampling”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Comunian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comunian, A., Jha, S.K., Giambastiani, B.M.S. et al. Training Images from Process-Imitating Methods. Math Geosci 46, 241–260 (2014). https://doi.org/10.1007/s11004-013-9505-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-013-9505-y

Keywords

Navigation