Skip to main content
Log in

Complex-Valued Random Fields for Vectorial Data: Estimating and Modeling Aspects

  • Special Issue
  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

Complex-valued random fields represent a natural extension of real-valued random fields and can be useful for modeling vectorial data in two dimensions (i.e., a wind field). In such a case, some theoretical issues arise concerning generating and fitting complex covariance functions to be used for prediction purposes. In this paper, some general aspects and properties of complex-valued random fields are summarized and a procedure to fit complex stationary covariance functions is proposed. A case study for analyzing wind speed data is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Apanasovich TV, Genton MG (2010) Cross-covariance functions for multivariate random fields based on latent dimensions. Biometrika 97:15–30

    Article  Google Scholar 

  • Bochner S (1933) Monotone Funktionen Stieltjessche Integrale und Harmonische Analyse. Math Ann 108:378–410

    Article  Google Scholar 

  • Chilés JP, Delfiner P (1999) Geostatistics. Wiley, New York

    Book  Google Scholar 

  • Dagan G (1985) A note on the higher-order corrections of the head covariances in steady aquifer flow. Water Resour Res 21(4):573–578

    Article  Google Scholar 

  • De Iaco S, Palma M, Posa D (2003) Covariance functions and models for complex-valued random fields. Stoch Environ Res Risk Assess 17:145–156

    Article  Google Scholar 

  • De Iaco S, Myers DE, Palma M, Posa D (2010) FORTRAN programs for space-time multivariate modeling and prediction. Comput Geosci 36(5):636–646

    Article  Google Scholar 

  • De Iaco S, Maggio S, Palma M, Posa D (2012a) Towards an automatic procedure for modeling multivariate space-time data. Comput Geosci 41(4):1–11

    Google Scholar 

  • De Iaco S, Maggio S, Palma M, Posa D (2012b) Advances in spatio-temporal modeling and prediction for environmental risk assessment. In: Haryanto B (ed) Air pollution—a comprehensive perspective, pp 365–390. doi:10.5772/51227

    Google Scholar 

  • De Iaco S, Myers DE, Palma M, Posa D (2013) Using simultaneous diagonalization to identify a space-time linear coregionalization. Math Geosci 45(1):69–86

    Article  Google Scholar 

  • Du J, Ma C (2013) Vector random fields with compactly supported covariance matrix functions. J Stat Plan Inference 143:457–467

    Article  Google Scholar 

  • Gaspari G, Cohn SE (1999) Construction of correlation functions in two and three dimensions. Q J R Meteorol Soc 125:723–757

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Grzebyk M, Wackernagel H (1994) Multivariate analysis and spatial/temporal scales: real and complex models. In: Proceedings of XVIIth international biometrics conference, Hamilton, Ontario, Canada, vol 1, pp 19–33

    Google Scholar 

  • Journel AG, Huijbregts CJ (1981) Mining geostatistics. Academic Press, London

    Google Scholar 

  • Lajaunie C, Béjaoui R (1991) Sur le krigeage des functions complexes. Note N-23/91/G, Centre de Geostatistique, Ecole des Mines de Paris, Fontainebleau

  • Li B, Zhang H (2011) An approach to modeling asymmetric multivariate spatial covariance structures. J Multivar Anal 102:1445–1453

    Article  Google Scholar 

  • Li B, Genton MG, Sherman M (2008) Testing the covariance structure of multivariate random fields. Biometrika 95(4):813–829

    Article  Google Scholar 

  • Ma C (2011) Covariance matrices for second-order vector random fields in space and time. IEEE Trans Signal Process 59(5):2160–2168

    Article  Google Scholar 

  • Majumdar A, Gelfand AE (2007) Multivariate spatial modeling using convolved covariance functions. Math Geol 39:225–245

    Article  Google Scholar 

  • Monestiez P, Petrenko A, Leredde Y, Ongari B (2002) Geostatistical analysis of three dimensional current patterns in coastal oceanography: application to the gulf of Lions (NW Mediterranean Sea). In: Sanchez-Vila H et al (eds) GeoEnv IV. Kluwer Academic, Netherlands, pp 367–378

    Google Scholar 

  • Ver Hoef JM, Barry RP (1998) Constructing and fitting models for cokriging and multivariable spatial prediction. J Stat Plan Inference 69:275–294

    Article  Google Scholar 

  • Wackernagel H (2003) Multivariate geostatistics—an introduction with applications, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Yaglom AM (1986) Correlation theory of stationary and related random functions, vols I, II. Springer, Berlin

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Raimon Tolosana for his precious comments, the anonymous referees and the editor for their useful suggestions, which contributed to improvements in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. De Iaco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Iaco, S., Posa, D. & Palma, M. Complex-Valued Random Fields for Vectorial Data: Estimating and Modeling Aspects. Math Geosci 45, 557–573 (2013). https://doi.org/10.1007/s11004-013-9468-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-013-9468-z

Keywords

Navigation