Skip to main content
Log in

A Robust Multiquadric Method for Digital Elevation Model Construction

Mathematical Geosciences Aims and scope Submit manuscript

Abstract

The multiquadric method (MQ) with high interpolation accuracy has been widely used for interpolating spatial data. However, MQ is an exact interpolation method, which is improper to interpolate noisy sampling data. Although the least squares MQ (LSMQ) has the ability to smooth out sampling errors, it is inherently not robust to outliers due to the least squares criterion in estimating the weights of sampling knots. In order to reduce the impact of outliers on the accuracy of digital elevation models (DEMs), a robust method of MQ (MQ-R) has been developed. MQ-R includes two independent procedures: knot selection and the solution of the system of linear equations. The two independent procedures were respectively achieved by the space-filling design and the least absolute deviation, both of which are very robust to outliers. Gaussian synthetic surface, which is subject to a series of errors with different distributions, was employed to compare the performance of MQ-R with that of LSMQ. Results indicate that LSMQ is seriously affected by outliers, whereas MQ-R performs well in resisting outliers, and can construct satisfactory surfaces even though the data are contaminated by severe outliers. A real-world example of DEM construction was employed to evaluate the robustness of MQ-R, LSMQ, and the classical interpolation methods including inverse distance weighting method, thin plate spline, and ANUDEM. Results showed that compared with the classical methods, MQ-R has the highest accuracy in terms of root mean square error. In conclusion, when sampling data is subject to outliers, MQ-R can be considered as an alternative method for DEM construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Aguilar FJ, Aguera F, Aguilar MA, Carvajal F (2005) Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy. Photogramm Eng Remote Sens 71(7):805–816

    Google Scholar 

  • Arrell K, Wise S, Wood J, Donoghue D (2008) Spectral filtering as a method of visualising and removing striped artefacts in digital elevation data. Earth Surf Process Landf 33(6):943–961

    Article  Google Scholar 

  • Bjorck A (1968) Iterative refinement of linear least squares solutions II. BIT Numer Math 8(1):8–30

    Article  Google Scholar 

  • Bjorck A (1996) Numerical methods for least squares problems. SIAM, Philadelphia

    Book  Google Scholar 

  • Brus DJ, de Gruijter JJ (1997) Random sampling or geostatistical modelling? Choosing between design-based and model-based sampling strategies for soil (with discussion). Geoderma 80(1–2):1–44

    Article  Google Scholar 

  • Brus DJ, de Gruijter JJ, van Groenigen JW (2007) Designing spatial coverage samples using the k-means clustering algorithm. In: Lagacherie P, McBratney AB, Voltz M (eds) Digital soil mapping: an introductory perspective. Elsevier, Amsterdam, pp 183–192

    Google Scholar 

  • Carlson RE, Foley TA (1991) The parameter R 2 in multiquadric interpolation. Comput Math Appl 21(9):29–42

    Article  Google Scholar 

  • Chen S, Cowan C, Grant P (1991) Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans Neural Netw 2(2):302–309

    Article  Google Scholar 

  • Chen CF, Li YY, Yue TX (2013) Surface modeling of DEMs based on a sequential adjustment method. Int J Geogr Inf Sci. doi:10.1080/13658816.2012.704037

    Google Scholar 

  • Chen CF, Yue TX, Li YY (2012a) A high speed method of SMTS. Comput Geosci 41:64–71

    Article  Google Scholar 

  • Chen CF, Fan ZM, Yue TX, Dai HL (2012b) A robust estimator for the accuracy assessment of remote-sensing-derived DEMs. Int J Remote Sens 33(8):2482–2497

    Article  Google Scholar 

  • Cochran WG (1977) Sampling techniques. Wiley, New York

    Google Scholar 

  • Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms. MIT Press, Cambridge

    Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Delmelle E (2009) Spatial sampling. In: Rogerson P, Fotheringham S (eds) Handbook of spatial analysis. Sage Publication, London, UK, 528 pp

    Google Scholar 

  • Delmelle EM, Goovaerts P (2009) Second-phase sampling designs for non-stationary spatial variables. Geoderma 153(1–2):205–216

    Article  Google Scholar 

  • Dielman TE (2005) Least absolute value regression: recent contributions. J Stat Comput Simul 75(4):263–286

    Article  Google Scholar 

  • Falivene O, Cabrera L, Tolosana-Delgado R, Sáez A (2010) Interpolation algorithm ranking using cross-validation and the role of smoothing effect. A coal zone example. Comput Geosci 36(4):512–519

    Article  Google Scholar 

  • Fan J, Hall P (1994) On curve estimation by minimizing mean absolute deviation and its implications. Ann Stat 22(2):867–885

    Article  Google Scholar 

  • Felicísimo AM (1994) Parametric statistical method for error detection in digital elevation models. ISPRS J Photogramm Remote Sens 49(4):29–33

    Article  Google Scholar 

  • Fisher PF, Tate NJ (2006) Causes and consequences of error in digital elevation models. Prog Phys Geogr 30(4):467–489

    Article  Google Scholar 

  • Franke R (1982) Scattered data interpolation: tests of some method. Math Comput 38(4):181–200

    Google Scholar 

  • Franke R, Hagen H, Nielson G (1994) Least squares surface approximation to scattered data using multiquadratic functions. Adv Comput Math 2(1):81–99

    Article  Google Scholar 

  • Golden Software I (2011) Surfer 10.3 users’ guide. Golden Software Inc., Golden, Colorado

  • Gong J, Li Z, Zhu Q, Sui H, Zhou Y (2000) Effects of various factors on the accuracy of DEMs: an intensive experimental investigation. Photogramm Eng Remote Sens 66(9):1113–1117

    Google Scholar 

  • Gonga-Saholiariliva N, Gunnell Y, Petit C, Mering C (2011) Techniques for quantifying the accuracy of gridded elevation models and for mapping uncertainty in digital terrain analysis. Prog Phys Geogr 35(6):739–764

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York, USA

    Google Scholar 

  • Hannah MJ (1981) Error detection and correction in digital terrain models. Photogramm Eng Remote Sens 47(1):63–69

    Google Scholar 

  • Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76(8):1905–1915

    Article  Google Scholar 

  • Huang F, Liu D, Tan X, Wang J, Chen Y, He B (2011) Explorations of the implementation of a parallel IDW interpolation algorithm in a Linux cluster-based parallel GIS. Comput Geosci 37(4):426–434

    Article  Google Scholar 

  • Huber P (1964) Robust estimation of a location parameter. Ann Math Stat 35(1):73–101

    Article  Google Scholar 

  • Hutchinson MF (1989) A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. J Hydrol 106(3–4):211–232

    Article  Google Scholar 

  • Hutchinson MF, Gessler PE (1994) Splines—more than just a smooth interpolator. Geoderma 62(1–3):45–67

    Article  Google Scholar 

  • Johnson ME, Moore LM, Ylvisaker D (1990) Minimax and maximin distance designs. J Stat Plan Inference 26(2):131–148

    Article  Google Scholar 

  • Kiountouzis E (1973) Linear programming techniques in regression analysis. Applied Statistics, 69–73

  • Lam NSN (1983) Spatial interpolation methods: a review. Cartogr Geogr Inf Sci 10(2):129–150

    Article  Google Scholar 

  • Li J, Chen C (2002) A simple efficient algorithm for interpolation between different grids in both 2D and 3D. Math Comput Simul 58(2):125–132

    Article  Google Scholar 

  • Liu H, Jezek KC, O’Kelly ME (2001) Detecting outliers in irregularly distributed spatial data sets by locally adaptive and robust statistical analysis and GIS. Int J Geogr Inf Sci 15(8):721–741

    Article  Google Scholar 

  • López C (1997) Locating some types of random errors in digital terrain models. Int J Geogr Inf Sci 11(7):677–698

    Article  Google Scholar 

  • Makarovic B (1973) Progressive sampling for digital terrain models. ITC J 3:397–416

    Google Scholar 

  • Maronna RA, Martin RD, Yohai VJ (2006) Robust statistics: theory and methods. Wiley Blackwell, New York

    Book  Google Scholar 

  • McMahon JR, Franke R (1992) Knot selection for least squares thin plate splines. SIAM J Sci Stat Comput 13:484–498

    Article  Google Scholar 

  • Meer P, Mintz D, Rosenfeld A, Kim DY (1991) Robust regression methods for computer vision: a review. Int J Comput Vis 6(1):59–70

    Article  Google Scholar 

  • Michalewicz Z, Fogel DB (2004) How to solve it: modern heuristics. Springer, Berlin

    Book  Google Scholar 

  • Mitas L, Mitasova H (1999) Spatial interpolation. In: Longley PA, Goodchild MF, Maguire MF, Rhind DJ (eds) Geographical information systems. Wiley, New York, pp 481–492

    Google Scholar 

  • Mitasova H, Hofierka J (1993) Interpolation by regularized spline with tension: II. Application to terrain modeling and surface geometry analysis. Math Geol 25(6):657–669

    Article  Google Scholar 

  • Müller WG (2007) Collecting spatial data: optimum design of experiments for random fields. Springer, Berlin

    Google Scholar 

  • Myers DE (1994) Spatial interpolation: an overview. Geoderma 62(1–3):17–28

    Article  Google Scholar 

  • Nychka D, Yang Q, Royle JA (1997) Constructing spatial designs using regression subset selection. Stat Environ 3:131–154

    Google Scholar 

  • Oliver MA, Webster R (1990) Kriging: a method of interpolation for geographical information systems. Int J Geogr Inf Sci 4(3):313–332

    Article  Google Scholar 

  • Pardo-Igúzquiza E (1998) Optimal selection of number and location of rainfall gauges for areal rainfall estimation using geostatistics and simulated annealing. J Hydrol 210(1–4):206–220

    Article  Google Scholar 

  • Portnoy S, Koenker R (1997) The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators. Stat Sci 12(4):279–300

    Article  Google Scholar 

  • Rippa S (1999) An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv Comput Math 11(2):193–210

    Article  Google Scholar 

  • Rogerson PA, Delmelle E, Batta R, Akella M, Blatt A, Wilson G (2004) Optimal sampling design for variables with varying spatial importance. Geogr Anal 36(2):177–194

    Google Scholar 

  • Rousseeuw PJ (1984) Least median of squares regression. J Amer Stat Assoc 79:871–880

    Article  Google Scholar 

  • Royle JA, Nychka D (1998) An algorithm for the construction of spatial coverage designs with implementation in SPLUS. Comput Geosci 24(5):479–488

    Article  Google Scholar 

  • Van Groenigen J, Pieters G, Stein A (2000) Optimizing spatial sampling for multivariate contamination in urban areas. Environmetrics 11(2):227–244

    Article  Google Scholar 

  • Van Groenigen JW, Siderius W, Stein A (1999) Constrained optimisation of soil sampling for minimisation of the kriging variance. Geoderma 87(3–4):239–259

    Article  Google Scholar 

  • Van Loan C (1985) On the method of weighting for equality-constrained least-squares problems. SIAM J Numer Anal 22(5):851–864

    Article  Google Scholar 

  • Wagner HM (1959) Linear programming techniques for regression analysis. J Amer Stat Assoc 54:206–212

    Article  Google Scholar 

  • Wang FT Scott DW (1994) The L1 method for robust nonparametric regression. J Amer Stat Assoc 89:65–76

    Google Scholar 

  • Wang JF, Haining R, Cao ZD (2010) Sample surveying to estimate the mean of a heterogeneous surface: reducing the error variance through zoning. Int J Geogr Inf Sci 24(4):523–543

    Article  Google Scholar 

  • Wang JF, Stein A, Gao BB, Ge Y (2012) A review of spatial sampling. Spatial Stat 2:1–14

    Google Scholar 

  • Weibel R, Heller M (1993) Digital terrain modelling. In: Maguire DJ, Goodchild MF, Rhind DW (eds) Geographical information systems. Principles and applications. Oxford University Press, Longman, London, pp 269–297

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 41101433), by Young and Middle-Aged Scientists Research Awards Fund of Shangdong Province (Grant No. BS2012HZ010), by the Key Laboratory of Surveying and Mapping Technology on Island and Reef, National Administration of Surveying, Mapping and Geoinfomation (Grant No. 2011B10), by the Key Laboratory of Coastal Zone Environmental Processes, YICCAS (Grant No. 201209), and by the Special Project Fund of Taishan Scholars of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanfa Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Li, Y. A Robust Multiquadric Method for Digital Elevation Model Construction. Math Geosci 45, 297–319 (2013). https://doi.org/10.1007/s11004-013-9451-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-013-9451-8

Keywords

Navigation