Advertisement

Mathematical Geosciences

, Volume 45, Issue 2, pp 131–147 | Cite as

Parallel Multiple-Point Statistics Algorithm Based on List and Tree Structures

  • Julien StraubhaarEmail author
  • Alexandre Walgenwitz
  • Philippe Renard
Article

Abstract

Multiple-point statistics are widely used for the simulation of categorical variables because the method allows for integrating a conceptual model via a training image and then simulating complex heterogeneous fields. The multiple-point statistics inferred from the training image can be stored in several ways. The tree structure used in classical implementations has the advantage of being efficient in terms of CPU time, but is very RAM demanding and then implies limitations on the size of the template, which serves to make a proper reproduction of complex structures difficult. Another technique consists in storing the multiple-point statistics in lists. This alternative requires much less memory and allows for a straightforward parallel algorithm. Nevertheless, the list structure does not benefit from the shortcuts given by the branches of the tree for retrieving the multiple-point statistics. Hence, a serial algorithm based on list structure is generally slower than a tree-based algorithm. In this paper, a new approach using both list and tree structures is proposed. The idea is to index the lists by trees of reduced size: the leaves of the tree correspond to distinct sublists that constitute a partition of the entire list. The size of the indexing tree can be controlled, and then the resulting algorithm keeps memory requirements low while efficiency in terms of CPU time is significantly improved. Moreover, this new method benefits from the parallelization of the list approach.

Keywords

Geostatistical simulation Multiple-point statistics Categorical variable List and tree structures Parallel computing 

Notes

Acknowledgements

We are grateful to Christian Höcker from Backer Hughes, to Pierre Biver from Total and to Jacques Rivoirard from Mines Paris Tech for providing us training images. We also thank the anonymous reviewers for their comments.

References

  1. Allard D, Comunian A, Renard P (2012) Probability aggregation methods in geoscience. Math Geosci 44(5):545–581. doi: 10.1007/s11004-012-9396-3 CrossRefGoogle Scholar
  2. Arpat G, Caers J (2007) Conditional simulation with patterns. Math Geol 39(2):177–203. doi: 10.1007/s11004-006-9075-3 CrossRefGoogle Scholar
  3. Caers J, Strebelle S, Payrazyan K (2003) Stochastic integration of seismic data and geologic scenarios: a West Africa submarine channel saga. Lead Edge 22(3):192–196 CrossRefGoogle Scholar
  4. Chugunova T, Hu L (2008) Multiple-point statistical simulations constrained by continuous auxiliary data. Math Geosci 40(2):133–146. doi: 10.1007/s11004-007-9142-4 CrossRefGoogle Scholar
  5. Comunian A, Renard P, Straubhaar J, Bayer P (2011) Three-dimensional high resolution fluvio-glacial aquifer analog—part 2: geostatistical modeling. J Hydrol 405(1–2):10–23. doi: 10.1016/j.jhydrol.2011.03.037 CrossRefGoogle Scholar
  6. de Iaco S, Maggio S (2011) Validation techniques for geological patterns simulations based on variogram and multiple-point statistics. Math Geosci 43(4):483–500. doi: 10.1007/s11004-011-9326-9 CrossRefGoogle Scholar
  7. Guardiano F, Strivastava R (1993) Multivariate geostatistics: beyond bivariate moments. In: Soares A (ed) Geostatistics Troia, vol 1. Kluwer Academic, Dordrecht, pp 133–144 CrossRefGoogle Scholar
  8. Hajizadeh A, Safekordi A, Farhadpour FA (2011) A multiple-point statistics algorithm for 3D pore space reconstruction from 2D images. Adv Water Resour 34(10):1256–1267. doi: 10.1016/j.advwatres.2011.06.003 CrossRefGoogle Scholar
  9. Journel A, Zhang T (2006) Necessity of a multiple-point prior model. Math Geol 38(5):591–610. doi: 10.1007/s11004-006-9031-2 CrossRefGoogle Scholar
  10. Kessler TC, Comunian A, Oriani F, Renard P, Nilsson B, Klint KE, Bjerg PL (2012) Modeling fine-scale geological heterogeneity—examples of sand lenses in tills. Ground Water. doi: 10.1111/j.1745-6584.2012.01015.x Google Scholar
  11. Liu Y, Harding A, Abriel W, Strebelle S (2004) Multiple-point simulation integrating wells, three-dimensional seismic data, and geology. Am Assoc Pet Geol Bull 88(7):905–921. doi: 10.1306/02170403078 Google Scholar
  12. Mariethoz G, McCabe M, Renard P (2012) Spatiotemporal reconstruction of gaps in multivariate fields using the direct sampling approach. Water Resour Res 48 W10507. doi: 10.1029/2012WR012115 CrossRefGoogle Scholar
  13. Mariethoz G, Renard P, Straubhaar J (2010) The direct sampling method to perform multiple-point geostatistical simulations. Water Resour Res 46 W11536. doi: 10.1029/2008WR007621 CrossRefGoogle Scholar
  14. Renard P (2007) Stochastic hydrogeology: what professionals really need? Ground Water 45(5):531–541. doi: 10.1111/j.1745-6584.2007.00340.x CrossRefGoogle Scholar
  15. Renard P, Straubhaar J, Caers J, Mariethoz G (2011) Conditioning facies simulations with connectivity data. Math Geosci 43(8):879–903. doi: 10.1007/s11004-011-9363-4 CrossRefGoogle Scholar
  16. Stien M, Hauge R, Kolbjørnsen O, Abrahamsen P (2007) Modification of the SNESIM algorithm. In: EAGE: petroleum geostatistics, Cascais, Portugal, 2007 Google Scholar
  17. Straubhaar J, Renard P, Mariethoz G, Froidevaux R, Besson O (2011) An improved parallel multiple-point algorithm using a list approach. Math Geosci 43(3):305–328. doi: 10.1007/s11004-011-9328-7 CrossRefGoogle Scholar
  18. Strebelle S (2002) Conditional simulation of complex geological structures using multiple-points statistics. Math Geol 34(1):1–21. doi: 10.1023/A:1014009426274 CrossRefGoogle Scholar
  19. Strebelle S, Remy N (2005) Post-processing of multiple-point geostatistical models to improve reproduction of training patterns. In: Leuangthong O, Deutsch C (eds) Geostatistics banff 2004. Springer, Berlin, pp 979–988 CrossRefGoogle Scholar
  20. Suzuki S, Strebelle S (2007) Real-time post-processing method to enhance multiple-point statistics simulation. In: EAGE: petroleum geostatistics, 2007, Cascais, Portugal Google Scholar
  21. Wu J, Zhang T, Journel A (2008) Fast filtersim simulation with score-based distance. Math Geosci 40(7):773–788. doi: 10.1007/s11004-008-9157-5 CrossRefGoogle Scholar
  22. Zhang T, Pedersen SI, Knudby C, McCormick D (2012) Memory-efficient categorical multi-point statistics algorithms based on compact search trees. Math Geosci 44:863–879. doi: 10.1007/s11004-012-9412-7 CrossRefGoogle Scholar
  23. Zhang T, Switzer P, Journel AG (2006) Filter-based classification of training image patterns for spatial simulation. Math Geol 38(1):63–80. doi: 10.1007/s11004-005-9004-x CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2013

Authors and Affiliations

  • Julien Straubhaar
    • 1
    Email author
  • Alexandre Walgenwitz
    • 2
  • Philippe Renard
    • 1
  1. 1.The Centre for Hydrogeology and Geothermics (CHYN)University of NeuchâtelNeuchâtelSwitzerland
  2. 2.Ephesia Consult SAGenevaSwitzerland

Personalised recommendations