Skip to main content

Advertisement

Log in

Hunting for Geochemical Associations of Elements: Factor Analysis and Self-Organising Maps

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

Two approaches, factor analysis (FA) and self-organising maps (SOM), have been used for the determination of geochemical associations in the two case studies evaluated here. In both case studies, different associations of elements, derived from different anthropogenic sources (smelters, ironworks, and chemical industry), are presented, together with natural associations of elements, all representing different geological environments. FA and SOM give similar results, despite some differences. Most similarities were achieved with the group of elements affected by strong pollution caused by smelting activities. The biggest difference between the two is that SOM can combine different groups into one, especially in the case of associations of elements connected with mild pollution (ironworking, chemical industry). The biggest advantage of SOM as opposed to FA is that SOM allow us to process variables, which are not normally distributed, or even of attributive nature. The use of such variables in SOM classification to prove the origins of associations of elements is also demonstrated here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdi H (2003) Factor rotations. In: Lewis-Beck M, Bryman A, Futing T (eds) Encyclopedia for research methods for the social sciences. Sage, Thousand Oaks, pp 978–982

    Google Scholar 

  • Aitchison J (1986) The statistical analysis of compositional data. Wiley, New York

    Google Scholar 

  • Aitchison J, Barcelo-Vidal C, Martin-Fernandez JA, Pawlowsky-Glahn V (2000) Logratio analysis and compositional distance. Math Geol 32(3):271–275

    Article  Google Scholar 

  • Alvarez-Guerra M, González-Piñuela C, Andrés A, Galán B, Viguri JR (2008) Assessment of Self-Organizing Map artificial neural networks for the classification of sediment quality. Environ Int 34(6):782–790

    Article  Google Scholar 

  • Arias R, Barona A, Ibarra-Berastegi G, Aranguiz I, Elías A (2008) Assessment of metal contamination in dredged sediments using fractionation and Self-Organizing Maps. J Hazard Mater 151(1):78–85

    Article  Google Scholar 

  • Astel A, Tsakovski S, Barbieri P, Simeonov V (2007) Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets. Water Res 41:4566–4578

    Article  Google Scholar 

  • Badran F, Yacoub M, Thiria S (2005) Self-organizing maps and unsupervised classification. In: Dreyfus G (ed) Neural networks: methodology and applications. Springer, Berlin, pp 379–442

    Google Scholar 

  • Bleeker EAJ, Van Gestel CAM (2007) Effects of spatial and temporal variation in metal availability on earthworms in floodplain soils of the river Dommel, The Netherlands. Environ Pollut 148:824–832

    Article  Google Scholar 

  • Child D (2006) The essentials of factor analysis. Continuum, London, p 180

    Google Scholar 

  • Covelli S, Piani R, Faganeli J, Brambati A (2004) Circulation and suspended matter distribution in a microtidal deltaic system: the Isonzo river mouth (northern Adriatic Sea). J Coast Res 41:130–141

    Google Scholar 

  • Covelli S, Fontolan G, Faganeli J, Ogrinc N (2006) Anthropogenic markers in the Holocene stratigraphic sequence of the Gulf of Trieste (northern Adriatic Sea). Mar Geol 230:29–51

    Article  Google Scholar 

  • Egozcue JJ, Pawlowsky-Glahn V (2005) Groups of parts and their balances in compositional data analysis. Math Geol 37(7):795–828

    Article  Google Scholar 

  • Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barcelo-Vidal C (2003) Isometric logratio transformations for compositional data analysis. Math Geol 35(3):279–300

    Article  Google Scholar 

  • Filzmoser P, Hron K (2008) Outlier detection for compositional data using robust methods. Math Geosci 40(3):233–248

    Article  Google Scholar 

  • Filzmoser P, Hron K, Reimann C, Garrett R (2009) Robust factor analysis for compositional data. Comput Geosci 35:1854–1861

    Article  Google Scholar 

  • Frontasyeva MV, Galinskaya TY, Krmar M, Matavuly M, Pavlov SS, Povtoreyko EA, Radnovic D, Steinnes E (2004) Atmospheric deposition of heavy metals in northern Serbia and Bosnia-Herzegovina studied by moss biomonitoring, neutron activation analysis and GIS technology. J Radioanal Nucl Chem 259(1):141–147

    Article  Google Scholar 

  • Gosar M (2008) Mercury in river sediments, floodplains and plants growing thereon in drainage area of Idrija mine, Slovenia. Pol J Environ Stud 17(2):227–236

    Google Scholar 

  • Gosar M, Šajn R (2003) Geochemical soil and attic dust survey in Idrija, Slovenia. J Phys (Paris) 107:561–564

    Google Scholar 

  • Gosar M, Šajn R, Biester H (2006) Binding of mercury in soils and attic dust in the Idrija mercury mine area (Slovenia). Sci Total Environ 369(1/3):150–162

    Google Scholar 

  • Haykin S (1999) Neural networks—a comprehensive foundation, 2nd edn. Pearson, Singapore, p 842

    Google Scholar 

  • Jeran Z, Jaaimovia R, Batie F, Smodi B, Wolterbeek HT (1996) Atmospheric heavy metal pollution in Slovenia derived from results for epiphytic lichens. Fresen J Anal Chem 354:681–687

    Google Scholar 

  • Jeran Z, Jačimovič R, Batič F, Mavsar R (2002) Lichens as integrating air pollution monitors. Environ Pollut 120:107–113

    Article  Google Scholar 

  • Jetter T (2009) MemBrain Neural Network Simulator V.03.05.03.02. Available via DIALOG. http://www.membrain-nn.de

  • Kartal S, Aydin Z, Tokahoglu S (2006) Fractionation of metals in street sediment samples by using the BCR sequential extraction procedure and multivariate statistical elucidation of the data. J Hazard Mater 132:80–89

    Article  Google Scholar 

  • Kohonen T (2001) Self-organizing maps, 3rd edn. Springer, Berlin, 501

    Google Scholar 

  • Kooistra L, Salas EAL, Clevers JGPW, Wehrens R, Leuven RSEW, Nienhuis PH, Buydens LMC (2004) Exploring field vegetation reflectance as an indicator of soil contamination in river floodplains. Environ Pollut 127:281–290

    Article  Google Scholar 

  • Kulahci F, Sen Z (2008) Multivariate statistical analyses of artificial radionuclides and heavy metal contaminations in deep mud of Keban Dam Lake, Turkey. Appl Radiat Isot 66:236–246

    Article  Google Scholar 

  • Lacassie JP, Roser B, Del Solar JR, Herve F (2004) Discovering geochemical patterns using self-organizing neural networks: a new perspective for sedimentary provenance analysis. Sediment Geol 165:175–191

    Article  Google Scholar 

  • Lee BH, Scholz M (2006) Application of the self-organizing map (SOM) to assess the heavy metal removal performance in experimental constructed wetlands. Water Res 40:3367–3374

    Article  Google Scholar 

  • Maiz I, Arambarri I, Garcia R, Millan E (2000) Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environ Pollut 110:3–9

    Article  Google Scholar 

  • Mele PM, Crowley DE (2008) Application of self-organizing maps for assessing soil biological quality. Agric Ecosyst Environ 126:139–152

    Article  Google Scholar 

  • Pasternak GB, Brown KJ (2006) Natural and anthropogenic geochemical signatures of floodplain and deltaic sedimentary strata, Sacramento, San Joaquin Delta, California, USA. Environ Pollut 141:295–309

    Article  Google Scholar 

  • Pawlowsky-Glahn V, Egozcue JJ (2001) Geometric approach to statistical analysis on the simplex. Stoch Environ Res Risk Assess 15/5:384–398

    Article  Google Scholar 

  • Pawlowsky-Glahn V, Egozcue JJ (2006) Compositional data and their analysis: An introduction. In: Buccianti A, Mateu-Figueras G, Pawlowsky-Glahn V (eds) Compositional data analysis in the geosciences: from theory to practice. Special publications, vol 264. Geological Society, London, pp 1–10

    Google Scholar 

  • Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R (2007) Lecture notes on compositional data analysis. In: wePapers. Available via DIALOG. http://www.wepapers.com/Papers/61766/Lecture_notes_on_compositional_data_analysis

  • Poot A, Gillissen F, Koelmans AA (2007) Effects of flow regime and flooding on heavy metal availability in sediment and soil of a dynamic river system. Environ Pollut 148:779–787

    Article  Google Scholar 

  • Reimann C, Filzmoser P, Garrett RG (2002) Factor analysis applied to regional geochemical data: problems and possibilities. Appl Geochem 17:185–206

    Article  Google Scholar 

  • Reimann C, Filzmoser P, Garrett RG, Dutter R (2008) Statistical data analysis explained: applied environmental statistics with R. Wiley, Chichester

    Google Scholar 

  • Šajn R (1999) Geokemične lastnosti urbanih sedimentov na ozemlju Slovenije (Geochemical properties of urban sediments on the territory of Slovenia). Geological Survey of Slovenia, Ljubljana

    Google Scholar 

  • Šajn R (2005) Using attic dust and soil for the separation of anthropogenic and geogenic elemental distributions in an old metallurgic area (Celje, Slovenia). Geochem, Explor Environ Anal 5(1):59–67

    Article  Google Scholar 

  • Šajn R (2006) Factor analysis of soil and attic-dust to separate mining and metallurgy influence, Meža Valley, Slovenia. Math Geol 38(6):735–747

    Google Scholar 

  • Samecka-Cymerman A, Stankiewicz A, Kolon K, Kempers AJ (2007) Self-organizing feature map (neural networks) as a tool in classification of the relations between chemical composition of aquatic bryophytes and types of streambeds in the Tatra national park in Poland. Chemosphere 67:954–960

    Article  Google Scholar 

  • Samecka-Cymerman A, Stankiewicz A, Kolon K, Kempers AJ (2009) Self-organizing feature map (neural networks) as a tool to select the best indicator of road traffic pollution (soil, leaves or bark of Robinia pseudoacacia L.). Environ Pollut 157:2061–2065

    Article  Google Scholar 

  • Stafilov T, Šajn R, Pančevski Z, Boev B, Frontasyeva M, Strelkova L (2009) Heavy metal contamination of topsoils around a lead and zinc smelter in the Republic of Macedonia. J Hazard Mater. doi:10.1016/j.jhazmat.2009.10.094

    Google Scholar 

  • Tan HS, George SE (2005) Investigating learning parameters in a standard 2-D SOM model to select good maps and avoid poor ones. In: Webb GI, Yu X (eds) AI 2004: Advances in artificial intelligence. Springer, Berlin, pp 425–437

    Google Scholar 

  • Tsakovski S, Kudlak B, Simeonov V, Wolska L, Namiesnik J (2009) Ecotoxicity and chemical sediment data classification by the use of self-organising maps. Anal Chim Acta 631:142–152

    Article  Google Scholar 

  • Valls RA (2008) Why, and how, we should use compositional data analysis—a step-by-step guide for field geologists. Wikibooks, Toronto

    Google Scholar 

  • Van Griethuysen C, Luitwieler M, Joziasse J, Koelmans AA (2005) Temporal variation of trace metal geochemistry in floodplain lake sediment subject to dynamic hydrological conditions. Environ Pollut 137:281–294

    Article  Google Scholar 

  • Vesanto J, Himberg J, Alhoniemi E, Parhankagas J (2000) SOM Toolbox for Matlab 5, Report A57. Helsinki University of Technology, Helsinki

  • Wijnhoven S, van der Velde G, Leuven RSEW, Eijsackers HJP, Smits AJM (2006) The effect of turbation on zinc relocation in a vertical floodplain soil profile. Environ Pollut 140:444–452

    Article  Google Scholar 

  • Yongming H, Peixuan D, Junji C, Posmentier ES (2006) Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci Total Environ 355:176–186

    Article  Google Scholar 

  • Žibret G (2002) Geokemične lastnosti tal in podstrešnega prahu na območju Celja (geochemical properties of soil and attic dust in Celje area). BSc thesis, University of Ljubljana, Ljubljana, p 76

  • Žibret G, Rokavec D (2009) Household dust and street sediment as an indicator of recent heavy metals in atmospheric emissions: a case study in a previously heavily contaminated area. Environ Earth Sci. doi:10.1007/s12665-009-0356-2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gorazd Žibret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Žibret, G., Šajn, R. Hunting for Geochemical Associations of Elements: Factor Analysis and Self-Organising Maps. Math Geosci 42, 681–703 (2010). https://doi.org/10.1007/s11004-010-9288-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-010-9288-3

Keywords

Navigation