Skip to main content

Advertisement

Log in

Measurement of Areas on a Sphere Using Fibonacci and Latitude–Longitude Lattices

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

The area of a spherical region can be easily measured by considering which sampling points of a lattice are located inside or outside the region. This point-counting technique is frequently used for measuring the Earth coverage of satellite constellations, employing a latitude–longitude lattice. This paper analyzes the numerical errors of such measurements, and shows that they could be greatly reduced if the Fibonacci lattice were used instead. The latter is a mathematical idealization of natural patterns with optimal packing, where the area represented by each point is almost identical. Using the Fibonacci lattice would reduce the root mean squared error by at least 40%. If, as is commonly the case, around a million lattice points are used, the maximum error would be an order of magnitude smaller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler I, Barabe D, Jean RV (1997) A history of the study of phyllotaxis. Ann Bot 80(3):231–244

    Article  Google Scholar 

  • Ahmad R, Deng Y, Vikram DS, Clymer B, Srinivasan P, Zweier JL, Kuppusamy P (2007) Quasi Monte Carlo-based isotropic distribution of gradient directions for improved reconstruction quality of 3D EPR imaging. J Magn Reson 184(2):236–245

    Article  Google Scholar 

  • Baddeley A, Jensen EBV (2004) Stereology for statisticians. Chapman and Hall–CRC Press, Boca Raton

    Google Scholar 

  • Barclay M, Galton A (2008) Comparison of region approximation techniques based on Delaunay triangulations and Voronoi diagrams. Comput Environ Urban Syst 32(4):261–267

    Article  Google Scholar 

  • Bardsley WE (1983) Random error in point counting. Math Geol 15(3):469–475

    Article  Google Scholar 

  • Bauer R (2000) Distribution of points on a sphere with application to star catalogs. J Guid Control Dyn 23(1):130–137

    Article  Google Scholar 

  • Bevington PR, Robinson DK (1992) Data reduction and error analysis for the physical sciences, 2nd edn. McGraw Hill, Boston

    Google Scholar 

  • Bevis M, Cambareri G (1987) Computing the area of a spherical polygon of arbitrary shape. Math Geol 19(4):335–346

    Article  Google Scholar 

  • Brauchart JS (2004) Invariance principles for energy functionals on spheres. Monatsh Math 141(2):101–117

    Article  Google Scholar 

  • Bravais L, Bravais A (1837) Essai sur la disposition des feuilles curvisériées. Ann Sci Nat 7:42–110, plates 2–3

    Google Scholar 

  • Chukkapalli G, Karpik SR, Ethier CR (1999) A scheme for generating unstructured grids on spheres with application to parallel computation. J Comput Phys 149(1):114–127

    Article  Google Scholar 

  • Conway JH, Sloane NJA (1998) Sphere packings, lattices and groups, 3rd edn. Springer, New York

    Google Scholar 

  • Cui J, Freeden W (1997) Equidistribution on the sphere. SIAM J Sci Comput 18(2):595–609

    Article  Google Scholar 

  • Damelin SB, Grabner PJ (2003) Energy functionals, numerical integration and asymptotic equidistribution on the sphere. J Complex 19(3):231–246 [Corrigendum 20(6):883–884]

    Article  Google Scholar 

  • Dixon R (1987) Mathographics. Basil Blackwell, Oxford

    Google Scholar 

  • Dixon R (1989) Spiral phyllotaxis. Comput Math Appl 17(4–6):535–538

    Article  Google Scholar 

  • Dixon R (1992) Green spirals. In: Hargittai I, Pickover CA (eds) Spiral symmetry. World Scientific, Singapore, pp 353–368

    Google Scholar 

  • Douady S, Couder Y (1992) Phyllotaxis as a physical self-organized growth process. Phys Rev Lett 68(13):2098–2101

    Article  Google Scholar 

  • Earle MA (2006) Sphere to spheroid comparisons. J Navig 59(3):491–496

    Article  Google Scholar 

  • Erikson RO (1973) Tubular packing of spheres in biological fine structure. Science 181(4101):705–716

    Article  Google Scholar 

  • Evans DG, Jones SM (1987) Detecting Voronoi (area-of-influence) polygons. Math Geol 19(6):523–537

    Article  Google Scholar 

  • Feng S, Ochieng WY, Mautz R (2006) An area computation based method for RAIM holes assessment. J Glob Position Syst 5(1–2):11–16

    Google Scholar 

  • Fowler DR, Prusinkiewicz P, Battjes J (1992) A collision-based model of spiral phyllotaxis. ACM SIGGRAPH Comput Graph 26(2):361–368

    Article  Google Scholar 

  • González Á (2009) Self-sharpening seismicity maps for forecasting earthquake locations. Abstracts of the sixth international workshop on statistical seismology. Tahoe City, California, 16–19 April 2009. http://www.scec.org/statsei6/posters.html

  • Gregory MJ, Kimerling AJ, White D, Sahr K (2008) A comparison of intercell metrics on discrete global grid systems. Comput Environ Urban Syst 32(3):188–203

    Article  Google Scholar 

  • Greiner B (1999) Euler rotations in plate-tectonic reconstructions. Comput Geosci 25(3):209–216

    Article  Google Scholar 

  • Gundersen HJG, Jensen EBV, Kiêu K, Nielsen J (1999) The efficiency of systematic sampling in stereology—reconsidered. J Microsc 193(3):199–211

    Article  Google Scholar 

  • Hannay JH, Nye JF (2004) Fibonacci numerical integration on a sphere. J Phys A 37(48):11591–11601

    Article  Google Scholar 

  • Howarth RJ (1998) Improved estimators of uncertainty in proportions, point-counting, and pass-fail test results. Am J Sci 298(7):594–607

    Google Scholar 

  • Hüttig C, Stemmer K (2008) The spiral grid: A new approach to discretize the sphere and its application to mantle convection. Geochem Geophys Geosyst 9(2):Q02018

    Article  Google Scholar 

  • Huxley MN (1987) The area within a curve. Proc Indian Acad Sci, Math Sci 97(1–3):111–116

    Article  Google Scholar 

  • Huxley MN (2003) Exponential sums and lattice points III. Proc Lond Math Soc 87(3):591–609

    Article  Google Scholar 

  • Jarái A, Kozák M, Rózsa P (1997) Comparison of the methods of rock-microscopic grain-size determination and quantitative analysis. Math Geol 29(8):977–991

    Article  Google Scholar 

  • Jean RV (1994) Phyllotaxis: a systemic study of plant pattern morphogenesis. Cambridge University Press, Cambridge

    Google Scholar 

  • Kafka AL (2007) Does seismicity delineate zones where future large earthquakes are likely to occur in intraplate environments? In: Stein S, Mazzotti S (eds) Continental intraplate earthquakes: science, hazard, and policy issues. Geological Society of America special paper 425, Boulder, Colorado, pp 35–48

  • Kantsiper B, Weiss S (1998) An analytic approach to calculating Earth coverage. Adv Astronaut Sci 97:313–332

    Google Scholar 

  • Kendall DG (1948) On the number of lattice points inside a random oval. Quart J Math Oxford 19(1):1–26

    Article  Google Scholar 

  • Kimerling AJ (1984) Area computation from geodetic coordinates on the spheroid. Surv Mapp 44(4):343–351

    Google Scholar 

  • Klíma K, Pick M, Pros Z (1981) On the problem of equal area block on a sphere. Stud Geophys Geod (Praha) 25(1):24–35

    Article  Google Scholar 

  • Knuth DE (1997) Art of computer programming, 3rd edn. Fundamental algorithms, vol 1. Addison-Wesley, Reading

    Google Scholar 

  • Kossobokov V, Shebalin P (2003) Earthquake prediction. In: Keilis-Borok VI, Soloviev AA (eds) Nonlinear dynamics of the lithosphere and earthquake prediction. Springer, Berlin, pp 141–207. [References in pp 311–332]

    Google Scholar 

  • Kozin MB, Volkov VV, Svergun DI (1997) ASSA, a program for three-dimensional rendering in solution scattering from biopolymers. J Appl Cryst 30(5):811–815

    Article  Google Scholar 

  • Kuhlemeier C (2007) Phyllotaxis. Trends Plant Sci 12(4):143–150

    Article  Google Scholar 

  • Lean JL, Picone JM, Emmert JT, Moore G (2006) Thermospheric densities derived from spacecraft orbits: application to the Starshine satellites. J Geophys Res 111(4):A04301

    Article  Google Scholar 

  • Li C, Zhang X, Cao Z (2005) Triangular and Fibonacci number patterns driven by stress on core/shell microstructures. Science 309(5736):909–911

    Article  Google Scholar 

  • Maciá E (2006) The role of aperiodic order in science and technology. Rep Prog Phys 69(2):397–441

    Article  Google Scholar 

  • Maley PD, Moore RG, King DJ (2002) Starshine: A student-tracked atmospheric research satellite. Acta Astronaut 51(10):715–721

    Article  Google Scholar 

  • Michalakes JG, Purser RJ, Swinbank R (1999) Data structure and parallel decomposition considerations on a Fibonacci grid. In: Preprints of the 13th conference on numerical weather prediction, Denver, 13–17 September 1999. American Meteorological Society, pp 129–130

  • Na HS, Lee CN, Cheong O (2002) Voronoi diagrams on the sphere. Comput Geom Theory Appl 23(2):183–194

    Google Scholar 

  • Niederreiter H (1992) Random number generation and quasi-Monte Carlo methods. Society for Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  • Niederreiter H, Sloan IH (1994) Integration of nonperiodic functions of two variables by Fibonacci lattice rules. J Comput Appl Math 51(1):57–70

    Article  Google Scholar 

  • Nye JF (2003) A simple method of spherical near-field scanning to measure the far fields of antennas or passive scatterers. IEEE Trans Antenna Propag 51(8):2091–2098

    Article  Google Scholar 

  • Ochieng WY, Sheridan KF, Sauer K, Han X (2002) An assessment of the RAIM performance of a combined Galileo/GPS navigation system using the marginally detectable errors (MDE) algorithm. GPS Solut 5(3):42–51

    Article  Google Scholar 

  • Prusinkiewicz P, Lindenmayer A (1990) The algorithmic beauty of plants. Springer, New York

    Google Scholar 

  • Purser RJ (2008) Generalized Fibonacci grids: A new class of structured, smoothly adaptive multi-dimensional computational lattices. Office Note 455, National Centers for Environmental Prediction, Camp Springs, MD, USA

  • Purser RJ, Swinbank R (2006) Generalized Euler-Maclaurin formulae and end corrections for accurate quadrature on Fibonacci grids. Office Note 448, National Centers for Environmental Prediction, Camp Springs, MD, USA

  • Rakhmanov EA, Saff EB, Zhou YM (1994) Minimal discrete energy on the sphere. Math Res Lett 1(6):647–662

    Google Scholar 

  • Ridley JN (1982) Packing efficiency in sunflower heads. Math Biosci 58(1):129–139

    Article  Google Scholar 

  • Ridley JN (1986) Ideal phyllotaxis on general surfaces of revolution. Math Biosci 79(1):1–24

    Article  Google Scholar 

  • Saff EB, Kuijlaars ABJ (1997) Distributing many points on a sphere. Math Intell 19(1):5–11

    Article  Google Scholar 

  • Sigler LE (2002) Fibonacci’s Liber Abaci: a translation into modern English of Leonardo Pisano’s book of calculation. Springer, New York

    Google Scholar 

  • Singh P (1985) The so-called Fibonacci numbers in ancient and medieval India. Hist Math 12(3):229–244

    Article  Google Scholar 

  • Sjöberg LE (2006) Determination of areas on the plane, sphere and ellipsoid. Surv Rev 38(301):583–593

    Google Scholar 

  • Sloan IH, Joe S (1994) Lattice methods for multiple integration. Oxford University Press, London

    Google Scholar 

  • Svergun DI (1994) Solution scattering from biopolymers: advanced contrast-variation data analysis. Acta Cryst A 50(3):391–402

    Article  Google Scholar 

  • Swinbank R, Purser RJ (1999) Fibonacci grids. In: Preprints of the 13th conference on numerical weather prediction, Denver, 13–17 September 1999. American Meteorological Society, pp 125–128

  • Swinbank R, Purser RJ (2006a) Standard test results for a shallow water equation model on the Fibonacci grid. Forecasting Research Technical Report 480, Met Office, Exeter, UK

  • Swinbank R, Purser RJ (2006b) Fibonacci grids: a novel approach to global modelling. Q J R Meteorol Soc 132(619):1769–1793

    Article  Google Scholar 

  • Van den Dool HM (2007) Empirical methods in short-term climate prediction. Oxford University Press, London

    Google Scholar 

  • Vogel H (1979) A better way to construct the sunflower head. Math Biosci 44(3–4):179–189

    Article  Google Scholar 

  • Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8(1):52–56

    Article  Google Scholar 

  • Weiller AR (1966) Probleme de l’implantation d’une grille sur une sphere, deuxième partie. Bull Géod 80(1):99–111

    Article  Google Scholar 

  • Weisstein EW (2002) CRC concise encyclopedia of mathematics CD-ROM, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of Generic Mapping Tools released. Eos Trans Am Geophys Union 79(47):579

    Article  Google Scholar 

  • Williamson DL (2007) The evolution of dynamical cores for global atmospheric models. J Meteorol Soc Jpn B 85:241–269

    Article  Google Scholar 

  • Winfield DC, Harris KM (2001) Phyllotaxis-based dimple patterns. Patent number WO 01/26749 Al. World Intellectual Property Organization

  • Zaremba SK (1966) Good lattice points, discrepancy, and numerical integration. Ann Mat Pura Appl 73(1):293–317

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, Á. Measurement of Areas on a Sphere Using Fibonacci and Latitude–Longitude Lattices. Math Geosci 42, 49–64 (2010). https://doi.org/10.1007/s11004-009-9257-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-009-9257-x

Navigation