Advertisement

Mathematical Geosciences

, 41:105 | Cite as

A Blocking Markov Chain Monte Carlo Method for Inverse Stochastic Hydrogeological Modeling

  • Jianlin FuEmail author
  • J. Jaime Gómez-Hernández
Article

Abstract

An adequate representation of the detailed spatial variation of subsurface parameters for underground flow and mass transport simulation entails heterogeneous models. Uncertainty characterization generally calls for a Monte Carlo analysis of many equally likely realizations that honor both direct information (e.g., conductivity data) and information about the state of the system (e.g., piezometric head or concentration data). Thus, the problems faced is how to generate multiple realizations conditioned to parameter data, and inverse-conditioned to dependent state data. We propose using Markov chain Monte Carlo approach (MCMC) with block updating and combined with upscaling to achieve this purpose. Our proposal presents an alternative block updating scheme that permits the application of MCMC to inverse stochastic simulation of heterogeneous fields and incorporates upscaling in a multi-grid approach to speed up the generation of the realizations. The main advantage of MCMC, compared to other methods capable of generating inverse-conditioned realizations (such as the self-calibrating or the pilot point methods), is that it does not require the solution of a complex optimization inverse problem, although it requires the solution of the direct problem many times.

Keywords

Geostatistics Inverse problem Model calibration History matching Spatial structure MCMC Reservoir modeling Conditional simulation 

References

  1. Alabert F (1987) The practice of fast conditional simulations through the LU decomposition of the covariance matrix. Math Geol 19(5):369–386 CrossRefGoogle Scholar
  2. Brooks SP (1998) Quantitative convergence assessment for Markov chain Monte Carlo via cusums. Stat Comput 8(3):267–274 CrossRefGoogle Scholar
  3. Carrera J, Neuman SP (1986) Estimation of aquifer parameters under transient and steady state conditions, 1. Maximum likelihood method incorporating prior information. Water Resour Res 22(2):199–210 CrossRefGoogle Scholar
  4. Davis MW (1987) Production of conditional simulations via the LU triangular decomposition of the covariance matrix. Math Geol 19(2):91–98 Google Scholar
  5. Dimitrakopoulos R, Luo X (2004) Generalized sequential Gaussian simulation on Group size ν and screen-effect approximations for large field simulations. Math Geol 36(5):567–591 CrossRefGoogle Scholar
  6. Efendiev Y, Datta-Gupta A, Ginting V, Ma X, Mallick B (2005) An efficient two-stage Markov chain Monte Carlo method for dynamic data integration. Water Resour 41:12423 CrossRefGoogle Scholar
  7. Efendiev Y, Hou T, Luo W (2006) Preconditioning Markov chain Monte Carlo simulations using coarse-scale methods. SIAM J Sci Comput 28(2):776–803 CrossRefGoogle Scholar
  8. Emery X (2005) Simple and ordinary multi-Gaussian kriging for estimating recoverable reserves. Math Geol 37(3):295–319 CrossRefGoogle Scholar
  9. Fu J (2008) A Markov chain Monte Carlo method for inverse stochastic modeling and uncertainty assessment. Unpublished Doctoral Dissertation, Technical University of Valencia, Spain, 158 pp Google Scholar
  10. Fu J, Gómez-Hernández JJ (2008) Preserving spatial structure for inverse stochastic simulation using blocking Markov chain Monte Carlo method. Inverse Probl Sci Eng 16(7):865–884 CrossRefGoogle Scholar
  11. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans Pattern Anal 6(6):721–741 CrossRefGoogle Scholar
  12. Gómez-Hernández JJ, Journel AG (1993) Joint simulation of multi-Gaussian random variables. In: Soares A (ed) Geostatistics Troia’92, vol 1. Springer, New York Google Scholar
  13. Gómez-Hernández JJ, Sahuquillo A, Capilla JE (1997) Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data: I. Theory J Hydrol 203:162–174 CrossRefGoogle Scholar
  14. Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their application. Biometrika 57(1):97–109 CrossRefGoogle Scholar
  15. Journel AG (1974) Geostatistics for conditional simulation of ore bodies. Econ Geol 69(5):673–687 Google Scholar
  16. Lin ZY (1992) On the increments of partial sums of a-mixing sequence. Theory Probab Appl 36:316–326 CrossRefGoogle Scholar
  17. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equations of state calculations by fast computing machines. J Chem Phys 21(3):1087–1092 CrossRefGoogle Scholar
  18. Oliver DS, Cunha LB, Reynolds AC (1997) Markov chain Monte Carlo methods for conditioning a log-permeability field to pressure data. Math Geol 29(1):61–91 CrossRefGoogle Scholar
  19. RamaRao BS, LaVenue AM, de Marsily G, Marietta MG (1995) Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields: 1. Theory and computational experiments Water Resour Res 31(3):475–493 CrossRefGoogle Scholar
  20. Renard P, de Marsily G (1997) Calculating equivalent permeability: a review. Adv Water Resour 20(5–6):253–278 CrossRefGoogle Scholar
  21. Robert CP, Casella G (1999) Monte Carlo statistical methods. Springer, Berlin Google Scholar
  22. Sahuquillo A, Capilla JE, Gómez-Hernández JJ, Andreu J (1992) Conditional simulation of transmissivity fields honouring piezometric head data. In: Blair WR, Cabrera E (eds) Hydraulic engineering software IV, Fluid flow modeling, vol II. Elsevier, Amsterdam, pp 201–214 Google Scholar
  23. Wen XH, Gómez-Hernández JJ (1996a) The constant displacement scheme for tracking particles in heterogeneous aquifers. Ground Water 34(1):135–142 CrossRefGoogle Scholar
  24. Wen XH, Gómez-Hernández JJ (1996b) Upscaling hydraulic conductivities in heterogeneous media: An overview. J Hydrol 183:9–32 CrossRefGoogle Scholar
  25. Yu B, Mykland P (1998) Looking at Markov samplers through cusum path plots: a simple diagnostic idea. Stat Comput 8(3):275–286 CrossRefGoogle Scholar
  26. Zimmerman DA, de Marsily G, Gotway CA, Marietta MG, Axness CL, Beauheim R, Bras R, Carrera J, Dagan G, Davies PB, Gallegos D, Galli A, Gómez-Hernández JJ, Grindrod P, Gutjahr AL, Kitanidis P, LaVenue AM, McLaughlin D, Neuman SP, RamaRao BS, Ravenne C, Rubin Y (1998) A comparison of seven geostatistically-based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resour Res 34(6):1373–1413 CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2008

Authors and Affiliations

  1. 1.Department of Hydraulic and Environmental EngineeringUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations