Skip to main content
Log in

Kriging Regionalized Positive Variables Revisited: Sample Space and Scale Considerations

  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

Frequently, regionalized positive variables are treated by preliminarily applying a logarithm, and kriging estimates are back-transformed using classical formulae for the expectation of a lognormal random variable. This practice has several problems (lack of robustness, non-optimal confidence intervals, etc.), particularly when estimating block averages. Therefore, many practitioners take exponentials of the kriging estimates, although the final estimations are deemed as non-optimal. Another approach arises when the nature of the sample space and the scale of the data are considered. Since these concepts can be suitably captured by an Euclidean space structure, we may define an optimal kriging estimator for positive variables, with all properties analogous to those of linear geostatistical techniques, even for the estimation of block averages. In this particular case, no assumption on preservation of lognormality is needed. From a practical point of view, the proposed method coincides with the median estimator and offers theoretical ground to this extended practice. Thus, existing software and routines remain fully applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitchison J, Brown JAC (1957) The lognormal distribution. Cambridge University Press, Cambridge, p 176

    Google Scholar 

  • Armstrong M (1992) Positive definiteness is not enough. Math Geol 24(1):135–143

    Article  Google Scholar 

  • Carrera J, Neuman S (1986) Estimation of aquifer parameters under steady-state and transient conditions: I. background and statistical framework. Water Resources Res 22(2):199–210

    Google Scholar 

  • Chilès J-P, Delfiner P (1999) Geostatistics—modeling spatial uncertainty. Wiley, New York, p 695

    Google Scholar 

  • Clark I, Harper WV (2000) Practical geostatistics 2000. Ecosse North America Llc, Columbus, p 342

    Google Scholar 

  • Cressie N (1991) Statistics for spatial data. Wiley, New York, p 900

    Google Scholar 

  • David M (1977) Geostatistical ore reserve estimation. Elsevier, New York, p 364

    Google Scholar 

  • Deutsch C, Journel A (1992) GSLIB—geostatistical software library and user’s guide. Oxford University Press, New York, p 340

    Google Scholar 

  • Dowd PA (1982) Lognormal kriging—the general case. Math Geol 14(5):475–499

    Article  Google Scholar 

  • Eaton ML (1983) Multivariate statistics: a vector space approach. Wiley, New York, p 512

    Google Scholar 

  • Emery X (2004) On the consistency of the indirect lognormal correction. Stoch Envir Res Risk Ass 18(4):258–264

    Google Scholar 

  • Journel AG (1980) The lognormal approach to predicting local distributions of selective mining unit grades. Math Geol 12(4):285–303

    Article  Google Scholar 

  • Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic, London, p 600

    Google Scholar 

  • Marcotte D, Groleau P (1997) A simple and robust lognormal estimator. Math Geol 29(8):993–1009

    Article  Google Scholar 

  • Mateu-Figueras G, Pawlowsky-Glahn V, Martín-Fernández JA (2002) Normal in + vs lognormal in . In: Bayer U, Burger H, Skala W (eds) Proceedings of IAMG’02—the eighth annual conference of the international association for mathematical geology. Selbstverlag der Alfred-Wegener-Stiftung, Berlin, p 1106

    Google Scholar 

  • McAlister D (1879) The law of the geometric mean. Proc Roy Soc Lond 29(1):367–376

    Article  Google Scholar 

  • Myers DE (1982) Matrix formulation of co-kriging. Math Geol 14(3):249–257

    Article  Google Scholar 

  • Nielsen OA (1997) An introduction to integration and measure theory. Wiley, New York, p 473

    Google Scholar 

  • Pardo-Igúzquiza E, Dowd P (2001) Variance-covariance matrix of the experimental variogram: assessing variogram uncertainty. Math Geol 33(4):397–419

    Article  Google Scholar 

  • Pawlowsky-Glahn V (2003) Statistical modelling on coordinates. In: Thió-Henestrosa S, Martín-Fernández JA (eds) Compositional data analysis workshop—CoDaWork’03, proceedings, University of Girona, ISBN 84-8458-111-X, http://ima.udg.es/Activitats/CoDaWork03/

  • Pawlowsky-Glahn V, Egozcue JJ (2001) Geometric approach to statistical analysis on the simplex. Stoch Environ Res Risk Assess (SERRA) 15(5):384–398

    Article  Google Scholar 

  • Pawlowsky-Glahn V, Olea RA (2004) Geostatistical analysis of compositional data. Oxford University Press, New York, p 181

    Google Scholar 

  • Pukelsheim F (1994) The three sigma rule. Am Stat 48(2):88–91

    Article  Google Scholar 

  • Rendu J-M (1979) Normal and lognormal estimation. Math Geol 11(4):407–422

    Article  Google Scholar 

  • Rivoirard J (1990) A review of lognormal estimators for in situ reserves (teacher’s aid). Math Geol 22(2):213–221

    Article  Google Scholar 

  • Roth C (1998) Is lognormal kriging suitable for local estimation? Math Geol 30(8):999–1009

    Article  Google Scholar 

  • Sichel H (1971) On a family of discrete distributions particularly suited to represent long-tailed frequency data. In: Laubscher NF (ed) Third sym mathem statist, Pretoria, South Africa, p 51–97

  • Tolosana-Delgado R (2005) Geostatistics for constrained variables: positive data, compositions and probabilities. Applications to environmental hazard monitoring. PhD thesis, IMAMB-Institut de Medi Ambient. University of Girona, Spain, p 214. Available online at http://www.tdx.cesca.es/TDX-0123106-122444/index_an.html

  • van den Boogaart KG, Brenning A (2001) Why is universal kriging better than irfk-kriging: estimation of the variogram in the presence of trend. In: Ross, G (ed) Proceedings of IAMG’01—the sixth annual conference of the international association for mathematical geology (CD-ROM)

  • Verly G (1983) The multiGaussian approach and its applications to the estimation of local reserves. Math Geol 15(2):259–286

    Article  Google Scholar 

  • Vysochanskij DF, Petunin YI (1980) Justification of the 3 sigma rule for unimodal distributions. Theory Probab Math Stat 21:25–36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimon Tolosana-Delgado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolosana-Delgado, R., Pawlowsky-Glahn, V. Kriging Regionalized Positive Variables Revisited: Sample Space and Scale Considerations. Math Geol 39, 529–558 (2007). https://doi.org/10.1007/s11004-007-9107-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-007-9107-7

Keywords

Navigation