Skip to main content

Advertisement

Log in

Heat Resistance of Zr–1Nb Alloy Claddings in Water Vapor after Ion-Plasma Nitriding

  • Published:
Materials Science Aims and scope

The influence of ion-plasma nitriding time of Zr–1Nb alloy fuel cladding tubes on their resistance to oxidation in water vapor at 600–1200°C was studied. The hardness of the samples along the wall thickness increases from 2 to 3 GPa, and on the surface up to 12 GPa depending on the processing time. The nitrided tubes oxidize much more under cracking and delamination of the oxide layer compared to the initial state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Z. Duan, H. Yang, Y. Satoh, K. Murakami, S. Kano, Z. Zhao, J. Shen, and H. Abe, “Current status of materials development of nuclear fuel cladding tubes for light water reactors,” Nuclear Eng. and Design, 316, 131–150 (2017); https://doi.org/10.1016/j.nucengdes.2017.02.031.

  2. S. J. Zinkle, K. A. Terrani, J. C. Gehin, L. J. Ott, and L. L. Snead, “Accident tolerant fuels for LWRs: a perspective,” J. of Nuclear Mater., 448, 374–379 (2014); https://doi.org/10.1016/j.jnucmat.2013.12.005.

  3. C. Tang, M. Stueber, H.J. Seifert, and M. Steinbrueck, “Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings,” Corr. Rev., 35, 141–165 (2017); https://doi.org/10.1515/corrrev-2017-0010.

  4. K. Terrani, “Accident tolerant fuel cladding development: promise, status, and challenges,” J. of Nuclear Mater., 501, 13–30 (2018); https://doi.org/10.1016/j.jnucmat.2017.12.043.

  5. J. Bischoff, C. Delafoy, C. Vauglin, P. Barberis, C. Roubeyrie, D. Perche, D. Duthoo, F. Schuster, J.-C. Brachet, E.W. Schweitzer, and K. Nimishakavi, “AREVA NP’s enhanced accident-tolerant fuel developments: focus on Cr-coated M5 cladding,” Nuclear Eng. and Techn, 50, Is. 2, 223–228 (2018); https://doi.org/10.1016/j.net.2017.12.004.

  6. A. S. Kuprin, V. A. Belous, V. V. Bryk, R. L. Vasilenko, V. N. Voyevodin, V. D. Ovcharenko, G. N. Tolmachova, I. V. Kolodiy, V. M. Lunyov, and I. O. Klimenko, “Vacuum-arc chromium coatings for Zr–1Nb alloy protection against high temperature oxidation in air,” Probl. of Atomic Sci. and Techn., 96, Is. 2, 111–118 (2015); https://doi.org/10.1016/j.jnucmat.2015.06.016.

  7. J. Yang, M. Steinbrück, C. Tang, M. Große, J. Liu, J. Zhang, D. Yun, and S. Wang, “Review on chromium coated zirconium alloy accident tolerant fuel cladding,” J. of Alloys and Comp., 895 (2022), Article number: 162450; https://doi.org/10.1016/j.jallcom.2021.162450.

  8. J. R. Conrad, J. L. Radtke, R. A. Dodd, F. J. Worzala, and N. C. Tran, “Plasma source ion-implantation technique for surface modification of materials,” J. of Appl. Phys., 62, 4591–4596 (1987); https://doi.org/10.1063/1.339055.

  9. S. Miyagawa, K. Saitoh, M. Ikeyama, G. Massouras, and Y. Miyagawa, “Composition and structure of zirconium implanted with nitrogen at high fluency,” Nuclear Instr. and Methods in Phys. Res. B., 69, Is. 4, 437–442 (1992); https://doi.org/10.1016/0168-583X(92)95299-7.

  10. S. Miyagawa, M. Ikeyama, K. Saitoh, S. Nakao, H. Niwa, S. Tanemura, and Y. Miyagawa, “Thermal behaviour of nitrogen implanted into zirconium,” Surf. and Coat. Techn., 66, Is. 1–3, 245–249 (1994); https://doi.org/10.1016/0257-8972(94)90005-1.

  11. Y. Miyagawa, S. Nakao, K. Baba, R. Hatada, M. Ikeyama, and S. Miyagawa, “Depth profile of nitrogen concentration and nano-hardness in nitrogen implanted Zr at RT and at 600°C,” Surf. and Coat. Techn., 103–104, 323–327 (1998); https://doi.org/10.1016/S0257-8972(98)00408-3.

  12. J. G. Han, J. S. Lee, B. H. Choi, W. Kim, and G. Tang, “Wear and fretting wear behaviour of ion-implanted Zircaloy-4,” Surf. and Coat. Techn., 83, Is. 1–3, 307–312 (1996); https://doi.org/10.1016/0257-8972(96)02846-0.

  13. L. S. Ozhigov, V. A. Belous, V. I. Savchenko, G. I. Nosov, V. D. Ovcharenko, G. N. Tolmachova, A. S. Kuprin, V. S. Goltvyanitsa, “Role of surface layer nanosrtucturing in improving mechanical and corrosion properties of reactor materials,” Probl. of Atomic Sci. and Techn., 108, Is. 2, 168–172 (2017); http://dspace.nbuv.gov.ua/handle/123456789/136004.

  14. W. Kim, K. S. Jung, B. H. Choi, H. S. Kwon, N. J. Lee, J. G. Han, M. I. Guseva, and M. V. Atamanov, “Corrosion behavior of nitrogen-implanted zircaloy,” Surf. and Coat. Techn., 76–77, 595–599 (1995); https://doi.org/10.1016/0257-8972(95)02576-6.

  15. S. J. Lee, H. S. Kwon, W. Kim, and B. H. Choi, “Effects of compositional and structural change on the corrosion behaviour of nitrogen implanted Zircaloy-4,” Mater. Sci. and Eng. A., 263, Is. 1, 23–31 (1999); https://doi.org/10.1016/S0921-5093(98)01036-3.

  16. K. Sridharan, S. P. Harrington, A. K. Johnson, J. R. Licht, M. H. Anderson, and T. R. Allen, “Oxidation of plasma surface modified zirconium alloy in pressurized high temperature water,” Mater. and Design, 28, Is. 4, 1177–1185 (2007); https://doi.org/10.1016/j.matdes.2006.01.019.

  17. Y. Z. Liu, X. T. Zu, S. Y. Qiu, C. Li, W. G. Ma, and X. Q. Huang, “Surface characteristics and oxidation behavior of nitrogen ion-implanted Zr–Sn–Nb alloy,” Surf. and Coat. Techn., 200, Is. 18–19, 5631–5635 (2006); https://doi.org/10.1016/j.surfcoat.2005.07.103.

  18. T. Czerwiec, U. N. Renevier, and H. Michel, “Low-temperature plasma-assisted nitriding,” Surf. and Coat. Techn., 131, Is. 1–3, 267–277 (2000); https://doi.org/10.1016/S0257-8972(00)00792-1.

  19. V. A. Belous, G. I Nosov, and I. O. Klimenko, “Strengthening of titanium alloys by ion-plasma nitriding,” Probl. of Atomic Sci. and Techn., 111, Is. 5, 73–82 (2017).

  20. T. Bell, “Surface engineering of austenitic stainless steel,” Surf. Eng., 18, Is. 6, 415–422 (2002); https://doi.org/10.1179/026708402225006268.

  21. R. Balerio, H. Kim, A. Morell-Pacheco, L. Hawkins, C.-H. Shiau, and L. Shao, “ZrN phase formation, hardening and nitrogen diffusion kinetics in plasma nitrided Zircaloy-4,” Materials, 14, Is. 13, Article number: 3572 (2021); https://doi.org/10.3390/ma14133572.

  22. V. S. Trush, V. N. Voyevodin, P. I. Stoev, V. N. Fedirko, A. G. Lukyanenko, M. A. Tikhonovsky, and V. A. Panov, “Properties of tubes from Zr–1%Nb alloy after thermochemical treatment and hydrogenation,” Probl. of Atomic Sci. and Techn., 135, Is. 5, 84–87 (2021); https://doi.org/10.46813/2021-135-084.

  23. V. S. Trush, V. N. Fedirko, A. G. Luk’yanenko, M. A. Tikhonovsky, and P. I. Stoev, “Influence of thermochemical treatment on properties of tubes from Zr–1%Nb alloy,” Probl. of Atomic Sci. and Techn., 114, Is. 2, 70–75 (2018); http://dspace.nbuv.gov.ua/handle/123456789/147068.

  24. V. S. Trush, V. M. Fedirko, A. G. Lukyanenko, V. M. Voyevodin, P. I. Stoev, and V. A. Panov, “Influence of the functional layer on the operating characteristics of Zr–1% Nb alloy at a temperature of 380°C,” Mater. Sci., 57, No. 2, 234–239 (2021); https://doi.org/10.1007/s11003-021-00537-y.

    Article  CAS  Google Scholar 

  25. V. A. Belous, Y. A. Zadneprovskiy, and I. S. Domnich, “Influence of surface pre-heating on the nitriding depth of steel 25CrMoVA used complex ion-plasma treatment,” Probl. of Atomic Sci. and Techn., 135, Is. 5, 115–121 (2021).

  26. W. C. Oliver, and W. C. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., 7, Is. 6, 1564–1583 (1992); https://doi.org/10.1557/JMR.1992.1564.

  27. Y. Yan, T. A. Burtseva, and M. C. Billone, “High-temperature steam-oxidation behavior of Zr–1Nb cladding alloy E110,” J. of Nuclear Mater., 393, 433–448 (2009); https://doi.org/10.1016/j.jnucmat.2009.06.029.

  28. Z. Gao, Y. Chen, J. Kulczyk-Malecka, P. Kelly, Y. Zeng, X. Zhang, C. Li, H. Liu, N. Rohbeck, and P. Xiao, “Comparison of the oxidation behavior of a zirconium nitride coating in water vapor and air at high temperature,” Corr. Sci., 138, 242–251 (2018); https://doi.org/10.1016/j.corsci.2018.04.015.

  29. C. Duriez, D. Drouan, and G. Pouzadoux, “Reaction in air and in nitrogen of pre-oxidised Zircaloy-4 and M5™ cladding,” J. of Nuclear Mater., 441, Is. 1–3, 84–95 (2013); https://doi.org/10.1016/j.jnucmat.2013.04.095.

  30. C. Duriez, T. Dupont, B. Schmet, and F. Enoch, “Zircaloy-4 and M5TM high temperature oxidation and nitriding in air,” J. of Nuclear Mater., 380, 30–45 (2008); https://doi.org/10.1016/j.jnucmat.2008.07.002.

  31. M. Steinbrück, “Prototypical experiments relating to air oxidation of Zircaloy-4 at high temperatures,” J. of Nuclear Mater., 392, Is. 3, 531–544 (2009); https://doi.org/10.1016/j.jnucmat.2009.04.018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Kuprin.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 58, No. 4, pp. 113–119, July–August, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuyok, V.A., Kuprin, O.S., Klymenko, I.O. et al. Heat Resistance of Zr–1Nb Alloy Claddings in Water Vapor after Ion-Plasma Nitriding. Mater Sci 58, 548–553 (2023). https://doi.org/10.1007/s11003-023-00697-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-023-00697-z

Keywords

Navigation