Skip to main content

Advertisement

Log in

Influence of the High-Voltage Discharge Treatment of Powders on the Properties of Metal Matrix Composites of the Ti–TiC System

  • Published:
Materials Science Aims and scope

We study the influence of the conditions of high-voltage electric discharge treatment of an initial powder mixture in kerosene and ethanol on the structure, phase composition, hardness, microhardness, wear resistance, and corrosion resistance of Ti–TiC metal matrix composites consolidated by the spark plasma sintering method. It is shown that, in the case of application of the “point–plane” electrode system in kerosene and alcohol media, an increase in the specific energy up to 20 MJ/kg leads to the accumulation of free carbon, which negatively affects both the spark plasma sintering and the properties of the obtained metal-matrix composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. T. Threrujirapapong, K. Kondoh, H. Imai, J. Umeda, and B. Fugetsu, “Titanium matrix composite reinforced with in-situ formed tic using carbon black nano particles via a wet process,” Trans. JWRI, 38, No. 1, 13–17 (2009).

    CAS  Google Scholar 

  2. N.-R. Park and I.-J. Shon, “Rapid synthesis and consolidation of nanostructured Ti–TiC composites from TiH2 and CNT by pulsed current activated heating,” Korean J. Mater. Res., 25, No. 1, 48–53 (2014).

    Article  CAS  Google Scholar 

  3. S. D. Luo, Q. Li, J. Tian, C. Wang, M. Yan, G. B. Schaffer, and M. Qian, “Self-assembled, aligned TiC nanoplatelet-reinforced titanium composites with outstanding compressive properties,” Scripta Mater., 69, No. 1, 29–32 (2013).

    Article  CAS  Google Scholar 

  4. J. H. Abboud and D. R. F. West, “In situ production of Ti–TiC composites by laser melting,” J. Mater. Sci. Lett., 11, 1675–1677 (1992).

    Article  CAS  Google Scholar 

  5. M. Kobashi, D. Ichioka, and N. Kanetake, “Combustion synthesis of porous TiC/Ti composite by a self-propagating mode,” Materials, 3, No. 7, 3939–3947 (2010).

    Article  CAS  Google Scholar 

  6. M. D. Hayat, H. Singh, Z. He, and P. Cao, “Titanium metal matrix composites: An overview,” Compos. Part A: Appl. Sci. Manuf., 121, 418–438 (2019).

    Article  CAS  Google Scholar 

  7. O. Sizonenko, S. Prokhorenko, A. Torpakov, D. Żak, Y. Lypian, R. Wojnarowska-Nowak, J. Polit, and E. M. Sheregii, “The metal-matrix composites reinforced by the fullerenes,” AIP Adv., 8, No. 8, 085317 (2018).

  8. O. N. Sizonenko, E. G. Grigoryev, N. S. Pristash, A. D. Zaichenko, A. S. Torpakov, Ye. V. Lypian, V. A. Tregub, A. G. Zholnin, A. V. Yudin, and A. A. Kovalenko, “Plasma methods of obtainment of multifunctional composite materials, dispersion-hardened by nanoparticles,” High Temp. Mat. Process., 36, No. 9, 891–896 (2017).

  9. N. I. Kuskova, O. M. Syzonenko, and A. S. Torpakov, “Electric discharge method of synthesis of carbon and metal–carbon nanomaterials,” High Temp. Mater. Process., 39, No. 1, 357–367 (2020).

    Article  CAS  Google Scholar 

  10. О. М. Syzonenko, S. V. Prokhorenko, E. V. Lypyan, A. D. Zaichenko, M. S. Prystash, A. S. Тоrpakov, M. О. Pashchyn, R. Voinarovska-Novak, and E. Sherehii, “Pulsed discharge preparation of a modifier of Ti–TiC system and its influence on the structure and properties of the metal,” Mater. Sci., 56, No. 2, 232–239 (2020).

    Article  CAS  Google Scholar 

  11. O. M. Syzonenko, P. Tashev, M. S. Prystash, A. S. Torpakov, Ye. V. Lypian, V. Dyakova, M. Kandeva, E. I. Taftai, and Y. G. Kostova, “Compaction of composites, dispersion-strengthened by nanoparticles, based on Ti–TiC system with the method of spark plasma sintering,” Eng. Sci., 58, No. 2, 79–94 (2021).

  12. S. Grazulis, D. Chateigner, R. T. Downs, A. T. Yokochi, M. Quiros, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, and A. Le Bail, “Crystallography open database – an open-access collection of crystal structures,” J. Appl. Crystallogr., 42, 726–729 (2009).

    Article  CAS  Google Scholar 

  13. S. J. Chipera and D. L. Bish, “Multireflection RIR and intensity normalizations for quantitative analyses: Applications to feldspars and zeolites,” Powder Diffr., 10, 47–55 (1995).

    Article  CAS  Google Scholar 

  14. A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, A. Moliterni, and R. Rizzi, “QUALX2.0: a qualitative phase analysis software using the freely available database POW_COD,” J. Appl. Crystallogr., 48, 598–603 (2015).

    Article  CAS  Google Scholar 

  15. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods, 9, 671–675 (2012).

    Article  CAS  Google Scholar 

  16. H. Waschull, Präparative Metallographie: Präparationstechnik für die Lichtmikroskopie, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig (1984).

    Google Scholar 

  17. M. Beckert und H. Klemm, Handbuch der Metallogaphischen Ätzverfahren, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig (1976).

    Google Scholar 

  18. A. Gusev, “Mechanical properties of nonstoichiometric cubic titanium carbide TiCy,” Phys. Chem. Chem. Phys., 23, 18558–18567 (2021).

    Article  CAS  Google Scholar 

  19. L. Z. Boguslavskiy, N. S. Nazarova, L. E. Ovchinnikova, D. V. Vinnychenko, and V. V. Diordiychuk, “Electrotechnical complex for the pulse discharge synthesis of carbon nanomaterials with different magnetic properties,” Tech. Electrodyn., 3, 107–108 (2012).

    Google Scholar 

  20. І. M. Pohrelyuk, S. M. Lavrys, and D. G. Savvakin, “Tribological behavior of Ti–6Al–4V matrix composites reinforced with TiC,” in: Proc. of the 10th Int. Conf. BALTTRIB’2019 (November, 14–16, 2019), Vytautas Magnus Univ., Kaunas (2019), pp. 215–220.

  21. C. C. Onuoha, Z. Memarrashidi, G. J. Kipouros, Z. N. Farhat, and K. P. Plucknett, “Aqueous corrosion behavior of TiC–304L stainless steel cermets in a 3.5 wt.% NaCl solution,” Int. J. Refract. Met. Hard Mater., 66, 234–243 (2017).

    Article  CAS  Google Scholar 

  22. L. E. Toth, Transition Metal Carbides and Nitrides, Elsevier, New York (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to О. М. Syzonenko.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 58, No. 2, pp. 20–28, March–April, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syzonenko, О.М., Tashev, P., Torpakov, А.S. et al. Influence of the High-Voltage Discharge Treatment of Powders on the Properties of Metal Matrix Composites of the Ti–TiC System. Mater Sci 58, 165–174 (2022). https://doi.org/10.1007/s11003-022-00645-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-022-00645-3

Keywords

Navigation