Skip to main content

Advertisement

Log in

Influence of Hydrogen on the Synthesis of Oxide-Ceramic Coatings on Aluminum Alloys in Electrolytic Plasmas

  • Published:
Materials Science Aims and scope

We determine the Gibbs energies for the reactions of interaction of aluminum oxides with neutral or ionized hydrogen in plasma channels in the course of synthesis of oxide-ceramic coatings. It is shown that ionized atomic hydrogen and molecular hydrogen reduce aluminum oxides and decrease the growth rate of oxide-ceramic coatings. We propose new methods for the acceleration of the process of formation of the coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. V. I. Chernenko, L. A. Snezhko, and I. I. Papanov, Deposition of Coatings by Anodic-Spark Electrolysis [in Russian], Khimiya, Leningrad (1991).

    Google Scholar 

  2. W. Xue, Z. Deng, Y. Lai, and R. Chen, “Analysis of phase distribution for ceramic coatings formed by microarc oxidation on aluminum alloy,” J. Amer. Ceram. Soc., 81(5), 1365–1368 (1998).

    Article  CAS  Google Scholar 

  3. A. L. Yerokhin, X. Nie, A. Leyland. A. Matthews, and S. J. Dowey, “Plasma electrolysis for surface engineering,” J. Surf. Coat. Technol., 122, Nos. 2–3, 73–93 (1999).

    Article  CAS  Google Scholar 

  4. X. Nie, E. I. Meletis, J. C. Jiang, A. Leyland, A. L. Yerokhin, and A. Matthews, “Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis,” J. Surf. Coat. Technol., 149, 245–251 (2002).

    Article  CAS  Google Scholar 

  5. M. D. Klapkiv, Determination of the Physicochemical Parameters of the Process of Synthesis of Oxide-Ceramic Coatings on Aluminum Alloys in Electrolytic Plasmas [in Ukrainian], Author’s Abstract of the Candidate-Degree Thesis (Engineering), Lviv (1996).

  6. L. O. Snizhko, A. L. Yerokhin, A. Pilkington, N. L. Gurevina, D. O. Misnyankin, A. Leyland, and A. Matthews, “Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions,” Electrochim. Acta., 49, 2085–2095 (2004).

    Article  CAS  Google Scholar 

  7. M. D. Klapkiv, “Simulation of synthesis of oxide-ceramic coatings in discharge channels of a metal–electrolyte system,” Fiz.-Khim. Mekh. Mater., 35, No. 2, 111–116 (1999); English translation: Mater. Sci., 35, No. 2, 279–283 (1999).

  8. R. O. Hussein, X. Nie, and D. O. Northwood, “An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing,” Electrochim. Acta, 112, 111–119 (2013).

    Article  CAS  Google Scholar 

  9. M. D. Klapkiv, O. S. Chuchmarev, P. Ya. Sydor, and V. M. Posuvailo, “Thermodynamics of the interaction of aluminum, magnesium, and zirconium with components of an electrolytic plasma,” Fiz.-Khim. Mekh. Mater., 36, No. 1, 56–65 (2000); English translation: Mater. Sci., 36, No. 1, 66–9 (2000).

  10. M. D. Klapkiv, H. M. Nykyforchyn, and V. M. Posuvailo, “Spectral analysis of an electrolytic plasma in the process of synthesis of aluminum oxide,” Fiz.-Khim. Mekh. Mater., 30, No. 3, 70–81 (1994); English translation: Mater. Sci., 30, No. 3, 333–343 (1994).

  11. F. Jaspard-Mécuson, T. Czerwiec, G. Henrion, T. Belmonte, L. Dujardin, A. Viola, and J. Beauvir, “Tailored aluminium oxide layers by bipolar current adjustment in the Plasma Electrolytic Oxidation (PEO) process,” Surf. Coat. Tech., 201(21), 8677–8682 (2007).

    Article  Google Scholar 

  12. L. O. Snizhko, “The nature of anodic gas at plasma electrolytic oxidation,” Met. Phys. Chem. Surf., 50(6), 705–708 (2014).

    Article  CAS  Google Scholar 

  13. M. Stashchuk and M. Dorosh, “Analytical evaluation of hydrogen induced stress in metal,” Int. J. Hydrog. Energy, 42, No. 9, 6394–6400 (2017).

    Article  CAS  Google Scholar 

  14. H. Nykyforchyn, E. Lunarska, V. Kyryliv, and O. Maksymiv, “Influence of hydrogen on mechanical properties of steels with the surface nanostructure,” in: O. Fesenko and L. Yatsenko (editors), Nanoplasmonics, Nanooptics, Nanocomposites, and Surface Studies, Proc. in Physics, Vol. 167, Cham, Springer (2015), pp. 457–465.

  15. V. M. Posuvailo, M. D. Klapkiv, M. M. Student, Y. Y. Sirak, and H. V. Pokhmurska, “Gibbs energy calculation for interaction of electrolytic plasma channel with inclusions of copper and copper oxide,” IOP Conf. Ser.: Mater. Sci. Eng., 181, 1–10 (2017).

    Article  Google Scholar 

  16. V. P. Glushko, L. V. Girvich, І. V. Vaits, V. А. Medvedev, G. А. Khachkuruzov, and V. S. Yungman, Thermodynamic Properties of Individual Substances: A Handbook [in Russian], Vol. 1, Part 1, Nauka, Moscow (1978).

  17. NIST-JANAF Thermochemical Tables [Electronic resource]; http://kinetics.nist.gov/janaf.

  18. P. Gupta, G. Tenhundfeld, E. O. Daigle, and D. Ryabkov, “Electrolytic plasma technology: Science and engineering. An overview,” Surf. Coat. Technol., 201, 8746–8760 (2007).

    Article  CAS  Google Scholar 

  19. А. I. Mamaev, Т. I. Dorofeeva, V. N. Borikov, and V. А. Mamaeva, “Simulation of the initial stages of formation of coatings on valve metals under high-voltage and high-current impulsive actions,” Fiz. Khim. Obrab. Mater., No. 3, 35–43 (2007).

  20. M. D. Klapkiv and V. M. Posuvailo, “Identification of the band emission spectra under the conditions of synthesis of Al2O3 in electrolytic plasmas,” Fiz.-Khim. Mekh. Mater., 33, No. 3, 119–120 (1997); English translation: Mater. Sci., 33, No. 3, 383–385 (1997).

  21. S. Stojadinović, M. Perić, M. Petković, R. Vasilić, B. Kasalicaa, I. Belća, and J. Radić-Perić, “Luminescence of the B2Σ+–X2Σ+ band system of AlO during plasma electrolytic oxidation of aluminum,” Electrochim. Acta, 56, 10122–10129 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. М. Posuvailo.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 56, No. 4, pp. 114–121, July–August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Posuvailo, V.М., Kovalchuk, І.V. Influence of Hydrogen on the Synthesis of Oxide-Ceramic Coatings on Aluminum Alloys in Electrolytic Plasmas. Mater Sci 56, 560–569 (2021). https://doi.org/10.1007/s11003-021-00464-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-021-00464-y

Keywords

Navigation