Skip to main content

Methodical Approach and a Criterion for the Evaluation of the Susceptibility of Pipe Steel to Corrosion Cracking

Specific features of the stress-corrosion fracture of specimens of Kh70 pipe steel are analyzed under the conditions simulating the influence of various combinations of stress-corrosion factors. For the evaluation of the susceptibility of steels to stress-corrosion cracking (SCC), we propose to use a dimensionless coefficient Ks equal to the ratio of the relative narrowing of the specimen in air to its relative narrowing in a solution. We introduce the following evaluation criterion: steel is susceptible to SCC if the coefficient Ks is equal to or greater than 1.6.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. F. Y. Cheng, “Pipeline Engineering,” in: Y. F. Cheng (editor), Pipeline Engineering, Encyclopedia of Life Support System (EOLSS), Developed under the Auspices of the UNESCO, EOLSS, Oxford (2010).

  2. V. G. Antonov, А. G. Arabei, V. N. Voronin, I. А. Dolgov, М. М. Kantor, Z. Knosziński, and Yu. P. Surkov, Stress-Corrosion Cracking of the Pipes of Gas Mains [in Russian], Nauka, Moscow (2006).

    Google Scholar 

  3. M. Baker, Stress Corrosion Cracking Study: Final Report for OPS TTO8. Integrity Management Program, Calgary (2005).

  4. R. N. Parkins, “A review of stress corrosion cracking of high pressure gas pipelines,” in: Corrosion 2000, Paper No. 363, NACE International, Houston, (2000).

    Google Scholar 

  5. Canadian National Energy Board. Report of Public Inquiry Concerning Stress Corrosion Cracking on Canadian Oil and Gas Pipelines, MH-2-95 (1996).

  6. E. A. Spiridovich, Elevation of the Reliability of Gas Mains under the Conditions of Stress Corrosion Cracking [in Russian], Candidate-Degree Thesis (Engineering), Nizhnii Novgorod (2014).

    Google Scholar 

  7. G. A. Zhang and Y. F. Cheng, “Micro-electrochemical characterization of corrosion of welded X70 pipeline steel in near-neutral pH solution,” Corros. Sci., 51, Issue 8, 1714–1724 (2009).

    Article  CAS  Google Scholar 

  8. X. Tang and Y. F. Cheng, “Micro-electrochemical characterization of the effect of applied stress on local anodic dissolution behavior of pipeline steel under near-neutral pH condition,” Electrochim. Acta, 54, 1499–1505 (2009).

    Article  CAS  Google Scholar 

  9. Z. Y. Liu, X. G. Li, C. W. Du, G. L. Zhai, and Y. F. Cheng, “Stress corrosion cracking behavior of X70 pipe steel in an acidic soil environment,” Corros. Sci., 50, 2251–2257 (2008).

    Article  CAS  Google Scholar 

  10. D. Hardie, E. A. Charles, and A. H. Lopez, “Hydrogen embrittlement of high strength pipeline steels,” Corros. Sci., 48, Issue 12, 4378–4385 (2006).

    Article  CAS  Google Scholar 

  11. J. Capelle, J. Gilgert, I. Dmytrakh, and G. Pluvinage, “Sensitivity of pipelines with steel API X52 to hydrogen embrittlement,” Int. J. Hydrogen Energy, 33, 7630–7641 (2008).

    Article  CAS  Google Scholar 

  12. T. Michler and J. Naumann, “Microstructural aspects upon hydrogen environment embrittlement of various bcc steels,” Int. J. Hydrogen Energy, 35, 821–832 (2010).

    Article  CAS  Google Scholar 

  13. T. Neeraj, R. Srinivasan, and J. Li, “Hydrogen embrittlement of ferritic steels: observations on deformation microstructure nanoscale dimples and failure by nanovoiding,” Acta Mater., 60, 5160–5171 (2012).

    Article  CAS  Google Scholar 

  14. Z. F. Wang and A. Atrens, “Initiation of stress corrosion cracking for pipeline steels in a carbonate–bicarbonate solution,” Metall. Mater. Trans. A, 27, 2686–2691 (1996).

    Article  Google Scholar 

  15. Z. Y. Liu, G. L. Zhai, X. G. Li, and C. W. Du, “Effect of deteriorated microstructures on stress corrosion cracking of X70 pipeline steel in acidic soil environment,” J. Univ. Sci. Technol. Beijing, 15, 707–713 (2008).

    Article  CAS  Google Scholar 

  16. Z. Y. Liu, X. G. Li, and Y. F. Cheng, “Mechanistic aspect of near-neutral pH stress corrosion cracking of pipelines under cathodic polarization,” Corros. Sci., 55, 54–60 (2012).

    Article  CAS  Google Scholar 

  17. B. Y. Fang, A. Atrens, J. Q. Wang, E. H. Han, Z. Y. Zhu, and W. Ke, “Review of stress corrosion cracking of pipeline steels in “low” and “high” pH solutions,” J. Mater. Sci., 38, 127–132 (2003).

    Article  CAS  Google Scholar 

  18. T. M. Ahmed, S. B. Lambert, A. Plumtree, and R. Sutherby, “Cyclic crack growth rates of X-60 pipeline steel in a neutral dilute solution,” Corrosion, 53, 581–590 (1997).

    Article  CAS  Google Scholar 

  19. L. Niu and Y. F. Cheng, “Corrosion behavior of X-70 pipe steel in near-neutral pH solution,” Appl. Surf. Sci., 253, 8626–8631 (2007).

    Article  CAS  Google Scholar 

  20. NACE TM-0198-2004, Slow Strain Rate Test Method for Screening Corrosion Resistant Alloys (CRAs) for Stress-Corrosion Cracking in Sour Oil-field Service, NACE International, Houston, Texas, USA (2004), pp. 1–17.

  21. W. B. Lisagor, “Environmental cracking-stress corrosion,” in: Corrosion Tests and Standards, ASTM International, Baltimore (2005), pp. 289–301.

    Google Scholar 

  22. Z. Y. Liu, X. G. Li, and Y. F. Cheng, “Mechanistic aspect of near-neutral pH stress corrosion cracking of pipelines under cathodic polarization,” Corros. Sci., 55, 54–60 (2012).

    Article  CAS  Google Scholar 

  23. M. Javidi and S. Bahalaou Horeh, “Investigating the mechanism of stress corrosion cracking in near-neutral and high pH environments for API 5L X52 steel,” Corros. Sci., 80, 213–220 (2014).

    Article  CAS  Google Scholar 

  24. K. Z. Szklarska-Smialowska, Z. Xia, and R. B. Rebak, “Technical note: stress corrosion cracking of Х-52 carbon steel in dilute aqueous solutions,” Corrosion, 50 (5), 334–338 (1994).

    Article  CAS  Google Scholar 

  25. GOST 9.901.1-89, Unified System of Corrosion and Aging Protection. Metals and Alloys. General Requirements to the Methods of Testing for Corrosion Cracking [in Russian], Izd. Standartov (1999).

  26. G. S. Pisarenko (editor), Strength of Materials. A Textbook for Institutions of Higher Education [in Russian], Vyshcha Shkola, Kyiv (1979).

  27. L. І. Nyrkova, N. О. Hapula, A. O. Rybakov, S. O. Osadchuk, and S. L. Mel’nychuk, A Method of Testing for the Susceptibility of Pipe Steels to Stress Corrosion Cracking under the Influence of Variable Wetting [in Ukrainian], Patent for Invention No. 107381 MPK (2014.01) G01N 17/00 G01N 3/00 G01N 3/08 (2006.01) G01N 3/20 (2006.01), Publ. on 10.12.2014, Byul. No. 2.

  28. L. I. Nyrkova, S. L. Mel’nychuk, S. O. Osadchuk, A. O. Rybakov, and N. О. Darahanova, “Development of a methodical approach to the investigation of stress corrosion cracking with regard for the complex influence of factors,” Rozv. Rozrob. Naft. Gaz. Rodov., No. 2 (63), 59–65 (2017).

    Google Scholar 

  29. L. I. Nyrkova, “Analysis of the influence of combinations of stress-corrosion factors on the stress-corrosion cracking of pipe steel for near-neutral рH values,” Visn. NTU “KhPI” , No. 16 (1238), 12–16 (2017).

  30. L. I. Nyrkova, S. L. Mel’nychuk, S. O. Osadchuk, and A. O. Rybakov, “Corrosion cracking of Kh70 pipe steel for potentials close to the maximum protective potential,” Fiz.-Khim. Mekh. Mater., 54, No. 4, 110–115 (2018); English translation: Mater. Sci., 54, No. 4, 567–572 (2019).

  31. Procedure of Investigation the Susceptibility of Pipe Steel to Stress-Corrosion Cracking Based on the Simulation of Internal and External Factors under the Laboratory Conditions [in Ukrainian], Paton Institute of Electric Welding, Ukrainian National Academy of Sciences, Kyiv (2012).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to L. І. Nyrkova.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 55, No. 5, pp. 14–20, September–October, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nyrkova, L.І., Osadchuk, S.О., Rybakov, А.О. et al. Methodical Approach and a Criterion for the Evaluation of the Susceptibility of Pipe Steel to Corrosion Cracking. Mater Sci 55, 625–632 (2020).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • Kh70 pipe steel
  • criterion of susceptibility to stress-corrosion cracking
  • deformation at low rates
  • potentiometry
  • stress-corrosion cracking